• Title/Summary/Keyword: Press bending

Search Result 1,674, Processing Time 0.022 seconds

Prediction of elastic constants of Timoshenko rectangular beams using the first two bending modes

  • Chen, Hung-Liang (Roger);Leon, Guadalupe
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.657-668
    • /
    • 2021
  • In this study, a relationship between the resonance frequency ratio and Poisson's ratio was proposed that can be used to directly determine the elastic constants. Using this relationship, the frequency ratio between the 1st bending mode and 2nd bending mode for any rectangular Timoshenko beam can be directly estimated and used to determine the elastic constants efficiently. The exact solution of the Timoshenko beam vibration frequency equation under free-free boundary conditions was determined with an accurate shear shape factor. The highest percent difference for the frequency ratio between the theoretical values and the estimated values for all the beam dimensions studied was less than 0.02%. The proposed equations were used to obtain the elastic constants of beams with different material properties and dimensions using the first two measured transverse bending frequencies. Results show that using the equations proposed in this study, the Young's modulus and Poisson's ratio of rectangular Timoshenko beams can be determined more efficiently and accurately than those obtained from industry standards such as ASTM E1876-15 without the need to test the torsional vibration.

Tensile damage of reinforced concrete and simulation of the four-point bending test based on the random cracking theory

  • Chang, Yan-jun;Wan, Li-yun;Mo, De-kai;Hu, Dan;Li, Shuang-bei
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.289-299
    • /
    • 2022
  • Based on the random cracking theory, the cylinder RVE model of reinforced concrete is established and the damage process is divided into three stages as the evolution of the cracks. The stress distribution along longitude direction of the concrete and the steel bar in the cylinder model are derived. The equivalent elastic modulus of the RVE are derived and the user-defined field variable subroutine (USDFLD) for the equivalent elastic modulus is well integrated into the ABAQUS. Regarding the tensile rebars and the concrete surrounding the rebars as the equivalent homogeneous transversely isotropic material, and the FEM analysis for the reinforced concrete beams is conducted with the USDFLD subroutine. Considering the concrete cracking and interfacial debonding, the macroscopic damage process of the reinforced concrete beam under four-point bending loading in the simulation. The volume fraction of rebar and the cracking degree are mainly discussed to reveal their influence on the macro-performance and they are calibrated with experimental results. Comparing with the bending experiment performed with 8 reinforced concrete beams, the bending stiffness of the second stage and the ultimate load simulated are in good agreement with the experimental values, which verifies the effectiveness and the accuracy of the improved finite element method for reinforced concrete beam.

Numerical investigation of effect of geotextile and pipe stiffness on buried pipe behavior

  • Candas Oner;Selcuk Bildik;J. David Frost
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.611-621
    • /
    • 2023
  • This paper presents the results of a numerical investigation of the effect of geotextile reinforcement on underlying buried pipe behavior using PLAXIS 3D. In this study, variable parameters such as the in-plane stiffness of the geotextile, the pipe stiffness, the soil stiffness, the footing width, the geotextile width, and the location of the geotextile reinforcement layer are investigated. Deflections and bending moments acting on the pipe are evaluated for different combinations of variables and are presented graphically. It is observed that with an increase in the in-plane stiffness of the geotextile reinforcement, there is a tendency for a decrease in both deflections in the pipe and bending moments acting on the pipe. Conversely, with an increase in the pipe stiffness, geotextile reinforcement efficiency decreases. In the investigated region of soil stiffness, for the given pipe and geotextile stiffness, an optimum efficiency of geotextile is observed in medium dense soils. Further, it is shown that relative lengths of geotextile and footing has an important role on geotextile efficiency. Lastly, it is also demonstrated that relative location of geotextile layer with respect to the buried pipe plays an important role on the geotextile efficiency in reducing the bending moments acting on the pipe and deflections in the pipe. In general, geotextiles are more efficient in reducing the bending moments as opposed to reducing deflections of the pipe. Numerical validation is done with an experimental study from the literature to observe the applicability of the numerical model used.

Finite element analysis of ratcheting on beam under bending-bending loading conditions

  • Sk. Tahmid Muhatashin Fuyad;Md Abdullah Al Bari;Md. Makfidunnabi;H.M. Zulqar Nain;Mehmet Emin Ozdemir;Murat Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.23-31
    • /
    • 2024
  • Ratcheting is the cyclic buildup of inelastic strain on a structure resulting from a combination of primary and secondary cyclic stress. It can lead to excessive plastic deformation, incremental collapse, or fatigue. Ratcheting has been numerically investigated on a cantilever beam, considering the current study's primary and secondary bending loads. In addition, the effect of input frequency on the onset of ratcheting has been investigated. The non-linear dynamic elastic-plastic approach has been utilized. Analogous to Yamashita's bending-bending ratchet diagram, a non-dimensional ratchet diagram with a frequency effect is proposed. The result presents that the secondary stress values fall sequentially with the increase of primary stress values. Moreover, a displacement amplification factor graph is also established to explain the effect of frequency on ratchet occurrence conditions. In terms of frequency effect, it has been observed that the lower frequency (0.25 times the natural frequency) was more detrimental for ratchet occurrence conditions than the higher frequency (2 times the natural frequency) due to the effect of dynamic displacement. Finally, the effect of material modeling of ratcheting behavior on a beam is shown using different hardening coefficients of kinematic hardening material modeling.

Research on three-point bending fatigue life and damage mechanism of aluminum foam sandwich panel

  • Wei Xiao;Huihui Wang;Xuding Song
    • Steel and Composite Structures
    • /
    • v.51 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Aluminum foams sandwich panel (AFSP) has been used in engineering field, where cyclic loading is used in most of the applications. In this paper, the fatigue life of AFSP prepared by the bonding method was investigated through a three-point bending test. The mathematical statistics method was used to analyze the influence of different plate thicknesses and core densities on the bending fatigue life. The macroscopic fatigue failure modes and damage mechanisms were observed by scanning electron microscopy (SEM). The results indicate that panel thickness and core layer density have a significant influence on the bending fatigue life of AFSP and their dispersion. The damage mechanism of fatigue failure to cells in aluminum foam is that the initial fatigue crack begins the cell wall, the thinnest position of the cell wall or the intersection of the cell wall and the cell ridge, where stress concentrations are more likely to occur. The fatigue failure of aluminum foam core usually starts from the semi-closed unit of the lower layer, and the fatigue crack propagates layer by layer along the direction of the maximum shear stress. The results can provide a reference for the practical engineering design and application of AFSP.

Elastic distortional buckling of cold-formed steel Z-Beams with stiffened holes using reduced thickness

  • Nasam S. Khater;Mahmoud H. El-Boghdadi;Nashwa M. Yossef
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.225-241
    • /
    • 2024
  • For several reasons, cold-formed steel (CFS) beams are often manufactured with holes. Nevertheless, because of holes, the reduction in the web area causes a decrease in the bending strength. Edge stiffeners are presently added around the holes to improve the bending strength of flexural members. Therefore, this research studies CFSZ-beams with stiffened holes and investigates how edge stiffener affects bending strength and failure modes. Nonlinear analysis was carried out using ABAQUS software and the developed finite element (FE) model was verified against tests from previous studies. Using the verified FE model, a parametric study of 104 FE models was conducted to investigate the influence of key parameters on bending strength of Z- sections. The results indicated that the effect of holes is less noticeable in very thin Z-sections. Moreover, adding edge stiffeners around the holes improves the flexural capacity of Z-beams and sometimes restores the original bending capacity. Because the computational techniques used to solve the CFS buckling mode with stiffened holes are still unclear, a numerical method using constrained and unconstrained finite strip method (CUFSM) software was proposed to predict the elastic distortional buckling moment for a wide variety of CFSZ-sections with stiffened holes. A numerical method with two procedures was applied and validated. Upon comparison, the numerical method accurately predicted the distortional buckling moment of CFS Z-sections with stiffened holes.

Study on Flash Weldability and Formability in Steel Sheets by Tailor Welded Blank (소재접합 일체성형 판재의 플래시 용접성과 성형성에 관한 연구)

  • Choe, Mun-Il;Min, Gyeong-Bok;Gang, Seong-Su
    • Transactions of Materials Processing
    • /
    • v.7 no.4
    • /
    • pp.400-406
    • /
    • 1998
  • The press formability analysis of welding parts was studied in the current work by the tailor welded blank. The press formability was tested by means of the flash weldability and the formability for two kinds of materials (SPCC & S35C). The results indicate that SPCC & S35C steel sheets showed good weldability and formability after an optimum welding conditions. The independent operation variables were characterized by strength of welding parts, deformation after the welding, press formability of welding parts and productibility of welding. The weldability and the quality of welding parts of the flashed SPCC steel sheet was superior to those of the S35C steel sheet, since a higher carbon content in steel sheet led to a higher hardness. The experimental results were discussed by the evaluation of the results obtained from tensile test, hardness test, micro-structure and V bending test.

  • PDF

Effect of Combining Wood Particles and Wire Net on the Physical Properties of Board (목재(木材)파티클과 철강결체(鐵鋼結締)가 보오드의 물리적(物理的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.3-26
    • /
    • 1985
  • The object of this study was to investigate the effects on physical and mechanical properties of wood particle and sawdust board combined with wire net. Conventional forming, press-lam, and veneer comply boards combining one to four wire net sheets were made from wood particle and sawdust with different spacings (8, 10, 12, and 18 Mok) and different wire diameters (0.35, 0.50, and 0.80mm) composing wire net. They were compared and analyzed statistically with specific gravity, thickness swelling, length swelling, bending properties (modulus of rupture, modulus of elasticity, work to proportional limit, and total work), internal bonding strength, and screw holding strength between wood particle and sawdust boards. The results obtained at this study as cording to the discussions might be concluded as follows; 1. In specific gravity, both particle and sawdust boards by press-lam method were higher than by conventional forming and veneer comply method, and the boards containing more wire net sheets also showed higher value. But the wire net spacings(Mok) had no influence on specific gravity. In general, particle board showed higher specific gravity than sawdust board. Veneer comply board showed lowest specific gravity values. 2. Both particle and sawdust boards by press-lam method was slightly lower than by conventional forming and veneer comply method in thickness swelling. The sawdust board containing 8, 12. and 18 Mok wire net showed lower thickness swelling than the corresponding particle board, but both sawdust and particle boards containing the T8 and 10 Mok wire net showed higher and similar thickness swelling. 3. Both particle and sawdust boards containing wire net showed no difference in MOR and MOE of bending. Comply board was the highest and particle board showed slightly higher than sawdust board in MOR and MOE values. 4. In work to proportional limit and total work in bending, both particle and sawdust boards containing thicker wire diameter and more wire net sheets showed higher value. From these facts, it is conceivable that boards with thicker wire diameter and more wire net sheets show increasing resistance against external force. But there was no significant difference between particle and sawdust borads. 5. In resistance against delamination (internal bonding strength), both sawdust and particle boards containing wire net showed lower value than control, and also showed decreasing tendency with more number of wire net sheet composed. Particle board showed higher resistance against delamination than sawdust board. 6. In screw holding strength, sawdust board containing thicker wire diameter and more wire net sheets showed higher value, but particle board by press-lam method was higher than by conventional forming and veneer comply method. Screw holding strength of particle board was higher than that of sawdust board.

  • PDF

Axisymmetrical bending of single- and multi-span functionally graded hollow cylinders

  • Bian, Z.G.;Wang, Y.H.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.355-371
    • /
    • 2013
  • Single- and multi-span orthotropic functionally graded hollow cylinders subjected to axisymmetrical bending are investigated on the basis of a unified shear deformable shell theory, in which the transverse displacement is expressed by means of a general shape function. To approach the through-thickness inhomogeneity of the hollow cylinder, a laminated model is employed. The shape function therefore shall be determined for each fictitious layer. To improve the computational efficiency, we resort to a transfer matrix method. Based on the principle of minimum potential energy, equilibrium equations are established, which are then solved analytically using the transfer matrix method for arbitrary boundary conditions. Numerical comparisons among a third-order shear deformable shell theory, an exact elastic theory and the present theory are provided for a simply supported hollow cylinder, from which the present theory turns out to be superior in stress estimation. Distributions of displacements and stresses in single- and three-span hollow cylinders with different boundary conditions are also illustrated in numerical examples.

Analysis of composite plates using various plate theories -Part 2: Finite element model and numerical results

  • Bose, P.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.727-746
    • /
    • 1998
  • Finite element models and numerical results are presented for bending and natural vibration using the unified third-order plate theory developed in Part 1 of this paper. The unified third-order theory contains the classical, first-order, and other third-order plate theories as special cases. Analytical solutions are developed using the Navier and L$\acute{e}$vy solution procedures (see Part 1 of the paper). Displacement finite element models of the unified third-order theory are developed herein. The finite element models are based on $C^0$ interpolation of the inplane displacements and rotation functions and $C^1$ interpolation of the transverse deflection. Numerical results of bending and natural vibration are presented to evaluate the accuracy of various plate theories.