• Title/Summary/Keyword: Press Concrete

Search Result 5,084, Processing Time 0.03 seconds

Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar

  • Rahdar, H.A.;Ghalehnovi, M.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.139-154
    • /
    • 2016
  • Since the concrete strength around the reinforcement rebar affects the tension stiffening, the tension stiffening effect of ultra high performance concrete on the concrete members reinforced by steel rebar is examined by testing the specimens with circular cross section with the length 850 mm reinforced by a steel rebar at the center of a specimen's cross section in this research. Conducting a tensile test on the specimens, the cracking behavior is evaluated and a curve with an exponential descending branch is obtained to explain the post-cracking zone. In addition, this paper proposes an equation for this branch and parameters of equation is obtained based on the ratio of cover thickness to rebar diameter (c/d) and reinforcement percentage (${\rho}$).

Fiber method analysis of rc beam retrofitted with turnbuckle external post-tensioning

  • Lejano, Bernardo A.
    • Computers and Concrete
    • /
    • v.17 no.1
    • /
    • pp.67-86
    • /
    • 2016
  • Strengthening as well as correcting unsightly deflections of reinforced concrete (RC) beam may be accomplished by retrofitting. An innovative way to do this retrofitting that is proposed in this study utilizes turnbuckle to apply external post-tensioning. This Turnbuckle External Post-Tensioning (T-EPT) was experimentally proven to improve the serviceability and load carrying capacity of reinforced concrete beams. The T-EPT system comprises a braced steel frame and a turnbuckle mechanism to provide the prestressing force. To further develop the T-EPT, this research aims to develop a numerical scheme to analyze the structural performance of reinforced concrete beams with this kind of retrofitting. The fiber method analysis was used as the numerical scheme. The fiber method is a simplified finite element method that is used in this study to predict the elastic and inelastic behavior of a reinforced concrete beam. With this, parametric study was conducted so that the effective setup of doing the T-EPT retrofitting may be determined. Different T-EPT configurations were investigated and their effectiveness evaluated. Overall, the T-EPT was effective in improving the serviceability condition and load carrying capacity of reinforced concrete beam.

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

Ductility of concrete slabs reinforced with low-ductility welded wire fabric and steel fibers

  • Tuladhar, Rabin;Lancini, Benjamin J.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.449-461
    • /
    • 2014
  • The use of low-ductility welded wire fabric (WWF) as a main tensile reinforcement in concrete slabs compromises the ductility of concrete structures. Lower ductility in concrete structures can lead to brittle and catastrophic failure of the structures. This paper presents the experimental study carried out on eight simply supported one-way slabs to study the structural behavior of concrete slabs reinforced with low-ductility WWF and steel fibers. The different types of steel fibers used were crimped fiber, hooked-end fiber and twincone fiber. The experimental results show that the ductility behavior of the slab specimens with low-ductility reinforcement was significantly improved with the inclusion of $40kg/m^3$ of twincone fiber. Distribution of cracks was prominent in the slabs with twincone fiber, which also indicates the better distribution of internal forces in these slabs. However, the slab reinforced only with low-ductility reinforcement failed catastrophically with a single minor crack and without appreciable deflection.

Fresh and hardened properties of concrete containing cold bonded aggregates

  • Thomas, Job;B., Harilal
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.77-89
    • /
    • 2014
  • The properties of fresh and hardened concrete made using three types of artificial cold bonded aggregates are determined. The properties, namely, slump, water absorption, compressive strength and splitting tensile strength of concrete containing artificial aggregate are reported. The variables considered are aggregate type and water-to-cement ratio. Three types of cold bonded aggregates are prepared using fly ash and quarry dust. The water-to-cement ratio of 0.35, 0.45, 0.55 and 0.65 is used. The test result indicates that artificial aggregates can be recommended for making the concrete up to a strength grade of 38 MPa. The use of quarry dust in the production of artificial aggregate mitigates environmental concerns on disposal problems of the dust. Hence, the alternate material proposed in this study is a green technology in concrete production.

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Analysis on IBEM for consideration on reinforced concrete slab resistance

  • Kyung, Je-Woon;Tae, Sung-Ho;Lee, Han-Seung;Lee, Sung-Bok
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.545-558
    • /
    • 2008
  • The corrosion of RC structures demonstrates very complicated forms of deterioration intermingled together but all pointing to a decrease in the durability of RC structures due to the corrosion of reinforcing bars. Until now, nondestructive techniques, such as half-cell potential and polarization resistance, have been widely available in the world. The former provides information on the probability of corrosion while the latter is associated with information concerning corrosion rates. Inversion by the boundary element method (IBEM) was developed for considering concrete resistivity. The applicability of the procedure was examined through a numerical analysis and electrolytic tests for RC slabs. A distribution in such concrete resistivity is relatively inhomogeneous including cracks on the surface of slabs. Regarding cracks in concrete, the relative coefficient of concrete resistance was introduced to perform its analysis. Further, the procedure will be developed to identify the corroded region visually using 3-D VRML.

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

Sustainable use of mine waste and tailings with suitable admixture as aggregates in concrete pavements-A review

  • Gayana, B.C.;Chandar, Karra Ram
    • Advances in concrete construction
    • /
    • v.6 no.3
    • /
    • pp.221-243
    • /
    • 2018
  • Utilization of mine waste rocks and tailings in concrete as aggregates will help in sustainable and greener development. The literature shows the potential use of iron ore tailings as a replacement of natural fine aggregates. As natural sand reserves are depleting day by day, there is a need for substitution for sand in concrete. A comprehensive overview of the published literature on the use of iron ore waste and tailings and other industrial waste in concrete is being presented. The effect of various properties such as workability, compressive strength, split tensile strength, flexural strength, durability and microstructure of concrete have been presented in this paper.

Concrete stiffness matrices for membrane elements

  • Hsu, Thomas T.C.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.599-608
    • /
    • 1997
  • The concrete stiffness matrices of membrane elements used in the finite element analysis of wall-type structures are reviewed and discussed. The behavior of cracked reinforced concrete membrane elements is first described by summarizing the constitutive laws of concrete and steel established for the two softened truss models (the rotating-angle softened-truss model and the fixed-angle softened-truss model). These constitutive laws are then related to the concrete stiffness matrices of the two existing cracking models (the rotating-crack model and the fixed-crack model). In view of the weakness in the existing models, a general model of the matrix is proposed. This general matrix includes two Poisson ratios which are not clearly understood at present. It is proposed that all five material properties in the general matrix should be established by new biaxial tests of panels using proportional loading and strain-control procedures.