• Title/Summary/Keyword: Press Concrete

Search Result 5,084, Processing Time 0.028 seconds

Seismic performance assessment of steel reinforced concrete members accounting for double pivot stiffness degradation

  • Juang, Jia-Lin;Hsu, Hsieh-Lung
    • Steel and Composite Structures
    • /
    • v.8 no.6
    • /
    • pp.441-455
    • /
    • 2008
  • This paper presents an effective hysteretic model for the prediction and evaluation of steel reinforced concrete member seismic performance. This model adopts the load-deformation relationship acquired from monotonic load tests and incorporates the double-pivot behavior of composite members subjected to cyclic loads. Deterioration in member stiffness was accounted in the analytical model. The composite member performance assessment control parameters were calibrated from the test results. Comparisons between the cyclic load test results and analytical model validated the proposed method's effectiveness.

An efficient three-dimensional fluid hyper-element for dynamic analysis of concrete arch dams

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.683-698
    • /
    • 2006
  • The accurate dynamic analysis of concrete arch dams relies heavily on employing a three-dimensional semi-infinite fluid element. The usual method for calculating the impedance matrix of this fluid hyper-element is dependent on the solution of a complex eigen-value problem for each frequency. In the present study, an efficient procedure is proposed which simplifies this procedure amazingly, and results in great computational time saving. Moreover, the accuracy of this technique is examined thoroughly and it is concluded that efficient procedure is incredibly accurate under all practical conditions.

Performance of structural-concrete members under sequential loading and exhibiting points of inflection

  • Jelic, I.;Pavlovic, M.N.;Kotsovos, M.D.
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.99-113
    • /
    • 2004
  • The article reports data on, and numerical modelling of, beams exhibiting points of inflection and subjected to sequential loading. Both tests and analysis point to inadequacies in current codes of practice. An alternative design methodology, which is strongly associated with the notion that contraflexure points should be designed as "internal supports", is shown to produce superior performance even though it requires significantly less secondary reinforcement than that advocated by codes.

The use of RKPM meshfree methods to compute responses to projectile impacts and blasts nearby charges

  • Choi, Hyung-Jin;Crawford, John;Wu, Youcai
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.119-143
    • /
    • 2010
  • This paper presents results from a study concerning the capability afforded by the RKPM (reproducing kernel particle method) meshfree analysis formulation to predict responses of concrete and UHPC components resulting from projectile impacts and blasts from nearby charges. In this paper, the basic features offered by the RKPM method are described, especially as they are implemented in the analysis code KC-FEMFRE, which was developed by Karagozian & Case (K&C).

Statistical division of compressive strength results on the aspect of concrete family concept

  • Jasiczak, Jozef;Kanoniczak, Marcin;Smaga, Lukasz
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.145-161
    • /
    • 2014
  • The article presents the statistical method of grouping the results of the compressive strength of concrete in continuous production. It describes the method of dividing the series of compressive strength results into batches of statistically stable strength parameters at specific time intervals, based on the standardized concept of "concrete family". The article presents the examples of calculations made for two series of concrete strength results, from which sets of decreased strength parameters were separated. When assessing the quality of concrete elements and concrete road surfaces, the principal issue is the control of the compressive strength parameters of concrete. Large quantities of concrete mix manufactured in a continuous way should be subject to continuous control. Standardized approach to assessing the concrete strength proves to be insufficient because it does not allow for the detection of subsets of the decreased strength results, which in turn makes it impossible to make adjustments to the concrete manufacturing process and to identify particular product or area on site with decreased concrete strength. In this article two independent methods of grouping the test results of concrete with statistically stable strength parameters were proposed, involving verification of statistical hypothesis based on statistical tests: Student's t-test and Mann - Whitney - U test.

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

Improving the concrete quality and controlling corrosion of rebar embedded in concrete via the synthesis of titanium oxide and silica nanoparticles

  • Jundong Wu;Yan Cui
    • Advances in concrete construction
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Concrete is one of the most widely used structure materials. Concrete is like the motor of the construction industry. The remarkable feature of this Concrete is its cheapness and low energy consumption. Concrete alone does not show resistance against any force but only against compressive forces. Therefore, steel rebar product is used as a reinforcement and increase the strength of Concrete. It can be done by putting rebar in Concrete in different ways. Rebar rusting is one of the crucial symptoms that cause swift destruction in reinforced structures-factors such as moisture in concrete increase the steel corrosion rate. In most cases, it is difficult to compensate for the damage caused by the corrosion of base metals, so preventing corrosion will be much more cost-effective. Coatings made with nanotechnology can protect Concrete against external degradation factors to prevent water and humidity from penetrating the Concrete and prevent rusting and corrosion of the rebar inside. It prevents water penetration and contamination into the Concrete and increases the Concrete's quality and structural efficiency. In this research, silica and titanium dioxide nanoparticle coatings have been used due to their suitable electrical and thermal properties, resistance to oxidation, corrosion, and wear to prevent the corrosion of rebars in Concrete. The results of this method show that these nanoparticles significantly improve the corrosion resistance of rebars.

Numerical analysis of thermal and composite stresses in pre-stressed concrete pavements

  • Nejad, Fereidoon Moghadas;Ghafari, Sepehr;Afandizadeh, Shahriar
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.169-182
    • /
    • 2013
  • One of the major benefits of the pre-stressed concrete pavements is the omission of tension in concrete that results in a reduction of cracks in the concrete slabs. Therefore, the life of the pavement is increased as the thickness of the slabs is reduced. One of the most important issues in dealing with the prestressed concrete pavement is determination of the magnitude of the pre-stress. Three dimensional finite element analyses are conducted in this research to study the pre-stress under various load (Boeing 777) and thermal gradient combinations. The model was also analyzed under temperature gradients without the presence of traffic loading and the induced stresses were compared with those from theoretical relationships. It was seen that the theoretical relationships result in conservative values for the stress.

Deterioration of tensile behavior of concrete exposed to artificial acid rain environment

  • Fan, Y.F.;Hu, Z.Q.;Luan, H.Y.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.1
    • /
    • pp.41-56
    • /
    • 2012
  • This study is focused on evaluation of the tensile properties of concrete exposed to acid rain environment. Acid rain environment was simulated by the mixture of sulfate and nitric acid in the laboratory. The dumbell-shaped concrete specimens were submerged in pure water and acid solution for accelerated conditioning. Weighing, tensile test, CT, SEM/EDS test and microanalysis were performed on the specimens. Tensile characteristics of the damaged concrete are obtained quantitatively. Evolution characteristics of the voids, micro cracks, chemical compounds, elemental distribution and contents in the concrete are examined. The deterioration mechanisms of concrete exposed to acid rain are well elucidated.

Viscoelastic constitutive modeling of asphalt concrete with growing damage

  • Lee, Hyun-Jong;Kim, Y. Richard;Kim, Sun-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.225-240
    • /
    • 1999
  • This paper presents a mechanistic approach to uniaxial viscoelastic constitutive modeling of asphalt concrete that accounts for damage evolution under cyclic loading conditions. An elasticviscoelastic correspondence principle in terms of pseudo variables is applied to separately evaluate viscoelasticity and time-dependent damage growth in asphalt concrete. The time-dependent damage growth in asphalt concrete is modeled by using a damage parameter based on a generalization of microcrack growth law. Internal state variables that describe the hysteretic behavior of asphalt concrete are determined. A constitutive equation in terms of stress and pseudo strain is first established for controlled-strain mode and then transformed to a controlled-stress constitutive equation by simply replacing physical stress and pseudo strain with pseudo stress and physical strain. Tensile uniaxial fatigue tests are performed under the controlled-strain mode to determine model parameters. The constitutive equations in terms of pseudo strain and pseudo stress satisfactorily predict the constitutive behavior of asphalt concrete all the way up to failure under controlled-strain and -stress modes, respectively.