• Title/Summary/Keyword: Preserving Information

Search Result 858, Processing Time 0.029 seconds

A Privacy-Preserving Health Data Aggregation Scheme

  • Liu, Yining;Liu, Gao;Cheng, Chi;Xia, Zhe;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3852-3864
    • /
    • 2016
  • Patients' health data is very sensitive and the access to individual's health data should be strictly restricted. However, many data consumers may need to use the aggregated health data. For example, the insurance companies needs to use this data to setup the premium level for health insurances. Therefore, privacy-preserving data aggregation solutions for health data have both theoretical importance and application potentials. In this paper, we propose a privacy-preserving health data aggregation scheme using differential privacy. In our scheme, patients' health data are aggregated by the local healthcare center before it is used by data comsumers, and this prevents individual's data from being leaked. Moreover, compared with the existing schemes in the literature, our work enjoys two additional benefits: 1) it not only resists many well known attacks in the open wireless networks, but also achieves the resilience against the human-factor-aware differential aggregation attack; 2) no trusted third party is employed in our proposed scheme, hence it achieves the robustness property and it does not suffer the single point failure problem.

Traceable Dynamic Public Auditing with Identity Privacy Preserving for Cloud Storage

  • Zhang, Yinghui;Zhang, Tiantian;Guo, Rui;Xu, Shengmin;Zheng, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5653-5672
    • /
    • 2019
  • In cloud computing era, an increasing number of resource-constrained users outsource their data to cloud servers. Due to the untrustworthiness of cloud servers, it is important to ensure the integrity of outsourced data. However, most of existing solutions still have challenging issues needing to be addressed, such as the identity privacy protection of users, the traceability of users, the supporting of dynamic user operations, and the publicity of auditing. In order to tackle these issues simultaneously, in this paper, we propose a traceable dynamic public auditing scheme with identity privacy preserving for cloud storage. In the proposed scheme, a single user, including a group manager, is unable to know the signer's identity. Furthermore, our scheme realizes traceability based on a secret sharing mechanism and supports dynamic user operations. Based on the security and efficiency analysis, it is shown that our scheme is secure and efficient.

GOPES: Group Order-Preserving Encryption Scheme Supporting Query Processing over Encrypted Data

  • Lee, Hyunjo;Song, Youngho;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1087-1101
    • /
    • 2018
  • As cloud computing has become a widespread technology, malicious attackers can obtain the private information of users that has leaked from the service provider in the outsourced databases. To resolve the problem, it is necessary to encrypt the database prior to outsourcing it to the service provider. However, the most existing data encryption schemes cannot process a query without decrypting the encrypted databases. Moreover, because the amount of the data is large, it takes too much time to decrypt all the data. For this, Programmable Order-Preserving Secure Index Scheme (POPIS) was proposed to hide the original data while performing query processing without decryption. However, POPIS is weak to both order matching attacks and data count attacks. To overcome the limitations, we propose a group order-preserving data encryption scheme (GOPES) that can support efficient query processing over the encrypted data. Since GOPES can preserve the order of each data group by generating the signatures of the encrypted data, it can provide a high degree of data privacy protection. Finally, it is shown that GOPES is better than the existing POPIS, with respect to both order matching attacks and data count attacks.

A Practical Privacy-Preserving Multi-Party Computation Protocol for Solving Linear Systems (선형계를 위한 실용적인 프라이버시 보존형 다자간 계산 프로토콜)

  • Yi Ok-Yeon;Hong Do-Won;Kang Ju-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.2
    • /
    • pp.13-24
    • /
    • 2006
  • We consider a privacy-preserving cooperative computation protocol evaluating a beneficial function of all participants' secret inputs, such that each party finally holds a share of the function output. We propose a practical privacy-preserving cooperative computation protocol for solving the linear system of equations problem md the linear least-squares problem. Solutions to these problems are widely used in many areas such as banking, manufacturing, and telecommunications. Our multi-party protocol is an efficiently extended version of the previous two-party model.

Edge preserving method using mean curvature diffusion in aerial imagery

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.54-58
    • /
    • 2002
  • Mean curvature diffusion (MCD) is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. By using mean curvature diffusion, noise is eliminated and edges are preserved. In this paper, we propose methods of automatic parameter selection and implementation for the MCD model coupled to min/max flow. The algorithm has been applied to high resolution aerial images and the results show that noise is eliminated and edges are preserved after removal of noise.

  • PDF

Models for Privacy-preserving Data Publishing : A Survey (프라이버시 보호 데이터 배포를 위한 모델 조사)

  • Kim, Jongseon;Jung, Kijung;Lee, Hyukki;Kim, Soohyung;Kim, Jong Wook;Chung, Yon Dohn
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.195-207
    • /
    • 2017
  • In recent years, data are actively exploited in various fields. Hence, there is a strong demand for sharing and publishing data. However, sensitive information regarding people can breach the privacy of an individual. To publish data while protecting an individual's privacy with minimal information distortion, the privacy- preserving data publishing(PPDP) has been explored. PPDP assumes various attacker models and has been developed according to privacy models which are principles to protect against privacy breaching attacks. In this paper, we first present the concept of privacy breaching attacks. Subsequently, we classify the privacy models according to the privacy breaching attacks. We further clarify the differences and requirements of each privacy model.

Privacy-Preserving Credit Scoring Using Zero-Knowledge Proofs (영지식 증명을 활용한 프라이버시 보장 신용평가방법)

  • Park, Chul;Kim, Jonghyun;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.6
    • /
    • pp.1285-1303
    • /
    • 2019
  • In the current credit scoring system, the credit bureau gathers credit information from financial institutions and calculates a credit score based on it. However, because all sensitive credit information is stored in one central authority, there are possibilities of privacy violations and successful external attacks can breach large amounts of personal information. To handle this problem, we propose privacy-preserving credit scoring in which a user gathers credit information from financial institutions, calculates a credit score and proves that the score is calculated correctly using a zero-knowledge proof and a blockchain. In addition, we propose a zero-knowledge proof scheme that can efficiently prove committed inputs to check whether the inputs of a zero-knowledge proof are actually provided by financial institutions with a blockchain. This scheme provides perfect zero-knowledge unlike Agrawal et al.'s scheme, short CRSs and proofs, and fast proof and verification. We confirmed that the proposed credit scoring can be used in the real world by implementing it and experimenting with a credit score algorithm which is similar to that of the real world.

An Adaptive Histogram Equalization Based Local Technique for Contrast Preserving Image Enhancement

  • Lee, Joonwhoan;Pant, Suresh Raj;Lee, Hee-Sin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2015
  • The main purpose of image enhancement is to improve certain characteristics of an image to improve its visual quality. This paper proposes a method for image contrast enhancement that can be applied to both medical and natural images. The proposed algorithm is designed to achieve contrast enhancement while also preserving the local image details. To achieve this, the proposed method combines local image contrast preserving dynamic range compression and contrast limited adaptive histogram equalization (CLAHE). Global gain parameters for contrast enhancement are inadequate for preserving local image details. Therefore, in the proposed method, in order to preserve local image details, local contrast enhancement at any pixel position is performed based on the corresponding local gain parameter, which is calculated according to the current pixel neighborhood edge density. Different image quality measures are used for evaluating the performance of the proposed method. Experimental results show that the proposed method provides more information about the image details, which can help facilitate further image analysis.

GENERALIZED CAYLEY GRAPHS OF RECTANGULAR GROUPS

  • ZHU, YONGWEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.1169-1183
    • /
    • 2015
  • We describe generalized Cayley graphs of rectangular groups, so that we obtain (1) an equivalent condition for two Cayley graphs of a rectangular group to be isomorphic to each other, (2) a necessary and sufficient condition for a generalized Cayley graph of a rectangular group to be (strong) connected, (3) a necessary and sufficient condition for the colour-preserving automorphism group of such a graph to be vertex-transitive, and (4) a sufficient condition for the automorphism group of such a graph to be vertex-transitive.

A Study on the Advanced Vector Quantization Algorithm for Edge Preserving (윤관보존을 위한 개선된 벡터 양자화 알고리즘에 관한 연구)

  • 김백기;이대영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.12
    • /
    • pp.72-80
    • /
    • 1994
  • In this paper, we present a digital image data compression method using vector quantization preserving edges. A new vector quantization algorithm is proposed using a new sampling method and edge region extraction. The codebook generation time is faster than existing algorithms and the quality of decompressed images is much improved. Extrimental results suggest that the resultant compression ratio and PSNR are better than those of BPVQ and HMVQ methods.

  • PDF