• Title/Summary/Keyword: Prepubertal female rat

Search Result 5, Processing Time 0.017 seconds

Identification of Genes Involved in the Onset of Female Puberty of Rat

  • Eun Jung Choi;Byung Ju Lee
    • Animal cells and systems
    • /
    • v.3 no.3
    • /
    • pp.319-329
    • /
    • 1999
  • Onset of female puberty follows a series of prepubertal cellular and molecular events including changes of synaptic plasticity, synthetic and releasing activity and gene expression. Dramatic increase of gonadal steroid level is one of the most prominent changes before the onset of puberty. Based on the importance of steroid feedback upon the hypothalamus, we adopted an estrogen sterilized rat (ESR) model where 100 ng of 17$\eta$-estradiol were administered into neonatal pubs for 7 days after birth. To identify genes involved in the onset of female puberty, we applied PCR differential display using RNA samples derived from ESR and control rat hypothalami. About 100 out of more than 1000 RNA species examined displayed differential expression patterns between a 60-day old control rat and ESR. Sequence analysis of differentially amplified PCR products showed homology with genes such as mouse kinesin superfamily-associated protein 3 (KAP3) and several cDNAs previously described by others in mouse and human tissues. Several gene products such as 2-1 and 8-1 corresponded to novel DNA sequences. We analyzed mRNA levels of KAP3, 2-1 and 8-1 genes in the hypothalami derived from neonatal, 6-, 28-, 31-, and 40-day old rats. Northern blot analysis showed that mRNAs of KAP3, 2-1 and 8-1 genes were markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited prepubertal increases in KAP3, 2-1 and 8-1 mRNA levels. Therefore, these genes may play important roles in the initiation of hypothalamic puberty. In addition, intracerebroventricular (icv) injection of antisense KAP3 oligodeoxynucleotide (ODN) clearly delayed puberty initiation determined by vaginal opening, which further confirmed that KAP3 plays an important role in the regulation of puberty initiation.

  • PDF

Direct Action of Genistein on the Hypothalamic Neuronal Circuits in Prepubertal Female Rats : Estrogen Receptor Beta($ER{\beta}$) Pathway? (미성숙한 암컷 흰쥐 시상하부의 신경회로에 미치는 Genistein의 직접 작용 : 에스트로겐 수용체 베타아형 경로?)

  • Heo, Hyun-Jin;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.179-185
    • /
    • 2011
  • Some phytoestrogens in soy and red wine, for example, might have beneficiary rather than adverse effects. In particular, dietary soy intake seems to be highly correlated with protection of breast cancer, osteoporosis and cardiovascular disorders. However, questions persist on the potential adverse effects of the main soy constituent genistein (GS) on female reproductive physiology. Previously we found that prepubertal exposure to GS could activate the reproductive system of immature female rats leading to precocious puberty onset, and intracerebroventricularly (ICV) injected GS could directly activate hypothalamic kisspeptin-GnRH neuronal circuits in adult female rats. The present study was performed to examine the hypothalamus-specific GS effects in prepubertal female rats and which subtype of estrogen receptor is mediated in this GS effect. Prepubertal female rats (PND 30) were anaesthetized, treated with single dose of GS (3.4 ${\mu}g$/animal), and sacrificed at 2 hrs post-injection. To determine the transcriptional changes of reproductive hormone-related genes in hypothalamus, total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). ICV infusion of GS significantly lowered the transcriptional activities of mTOR (1:$0.361{\pm}0.058$ AU, p<0.001) but increased that of GAD67 (1:$1.285{\pm}0.099$ AU, p<0.05), which are known to act as an upstream modulator of kisspeptin and GnRH neuronal activities in the hypothalamus, respectively. GS administration enhanced significantly the mRNA levels of KiSS-1(1:$1.458{\pm}0.078$ AU, p<0.001), and exerted no effect on the mRNA level of kisspeptin receptor GPR-54 (1:$1.29{\pm}0.08$ AU). GnRH gene expression was significantly decreased in GS-treated group compared to control group (1:$0.379{\pm}0.196$ AU, p<0.05). There was no difference in the mRNA level of $ER{\alpha}$ in the GS-treated group compare to control group (1:$1.180{\pm}0.390$ AU, Fig. 3A). However, icv infusion of GS significantly increased the transcriptional activities of $ER{\beta}$ (1:$4.209{\pm}0.796$ AU, p<0.01, Fig. 3B). Taken together, the present study indicated that the acute exposure to GS could directly alter the hypothalamic GnRH modulating system in prepubertal female rats. Our study strongly suggested the involvement of $ER{\beta}$ pathway in GS's hypothalamus-specific action, and this idea is consistent with the GS's well-known $ER{\beta}$-mediated protective action in breast cancer.

Effect of Lipopolysaccharide (LPS) Exposure on the Reproductive Organs of Immature Female Rats

  • Yoo, Da Kyung;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • Lipopolysaccharide (LPS), an endotoxin, elicits strong immune responses in mammals. Several lines of evidence demonstrate that LPS challenge profoundly affects female reproductive function. For example, LPS exposure affects steroidogenesis and folliculogenesis, resulting in delayed puberty onset. The present study was conducted to clarify the mechanism underlying the adverse effect of LPS on the delayed puberty in female rats. LPS was daily injected for 5 days ($50{\mu}g/kg$, PND 25-29) to treated animals and the date at VO was evaluated through daily visual examination. At PND 39, animals were sacrificed, and the tissues were immediately removed and weighed. Among the reproductive organs, the weights of the ovaries and oviduct from LPS-treated animals were significantly lower than those of control animals. There were no changes in the weights of uterus and vagina between the LPS-treated and their control animals. immunological challenge by LPS delayed VO. Multiple corpora lutea were found in the control ovaries, indicating ovulations were occurred. However, none of corpus luteum was present in the LPS-treated ovary. The transcription level of steroidogenic acute regulatory protein (StAR), CYP11A1, CYP17A1 and CYP19 were significantly increased by LPS treatment. On the other hand, the levels of $3{\beta}$-HSD, $17{\beta}$-HSD and LH receptor were not changed by LPS challenge. In conclusion, the present study demonstrated that the repeated LPS exposure during the prepubertal period could induce multiple alterations in the steroidogenic machinery in ovary, and in turn, delayed puberty onset. The prepubertal LPS challenge model used in our study is useful to understand the reciprocal regulation of immune (stress) - reproductive function in early life.

Effects of Polychlorinated Biphenyls on the Expression of KAP3 Gene Involved in the 'Critical Period' of Rat Brain Sexual Differentiation

  • Lee, Chae-Kwan;Kang, Han-Seung;June, Bu-ll;Lee, Byung-Ju;Moon, Deog-Hwan;Kang, Sung-Goo
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.327-331
    • /
    • 2001
  • There is a critical developmental period during which brain sexual differentiation proceeds irreversibly under the influence of gonadal hormone. Recently, kinesin superfamily-associated protein 3 (KAP3) gene expressed during the 'critical period' of rat brain differentiation was identified by us (Choi and Lee, 1999). KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons (Yamazaki et al., 1996). mRNA level of KAP3 gene markedly increased before the initiation of puberty. Neonatal treatment of estrogen clearly inhibited the prepubertal increase in KAP3 mRNA level (Choi and Lee, 1999). In the present study, we aimed to investigate the effects of polychlorinated biphenyls (PCBs), as endocrine disruptors (EDs) on the expression of KAP3 gene during the 'critical period' of rat brain development. In our data, PCBs significantly decreased the expression of KAP3 gene in the fetal (day 17) and the neonatal (day 6 after birth in) male and female rat brains. The body weight and the breeding ability were significantly decreased in the PCBs-exposed rats compared with the control. These results showed that PCBs affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the fetal and the neonatal rat brains. The maternal exposure to the PCBs may lead to toxic response in embryonic brain sexual differentiation and breeding ability after sexual maturation. This study indicates that KAP3 gene may be useful as a gene marker to analyze the molecular mechanism of toxic response in the animal brain development and sexual maturation exposed to PCBs.

  • PDF

Effect of Di(2-ethyl hexyl)phthalate(DEHP) on the Onset of Puberty in Female Rat (암컷 흰쥐의 사춘기 개시에 미치는 di(2-ethyl hexyl)phthalate(DEHP)의 효과)

  • Lee, Kyeung-Yeup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Phthalates such as di(2-ethyl hexyl)phthalate(DEHP) are industrial chemicals with wide-ranging human exposures because of their use in plastics and other common consumer products. Consequently, their adverse effects as endocrine disruptor in the reproductive physiology of both laboratory rodents and human have been studied extensively. The present study was undertaken to examine whether prepubertal exposure to DEHP affects on the onset of puberty and the associated reproductive parameters such as hormone receptor expressions in female rats. DEHP(100mg/kg/day) was administered daily from postnatal day 25(PND 25) through the day when the first vaginal opening(VO) was observed, and the animals were sacrificed on the next day. Gross anatomy and weight of reproductive tissues were compared to test the DEHP's effects on the cell proliferation. Furthermore, histological studies were performed to assess the structural alterations in the tissues. Specific radioimmunoassay was carried out to measure serum LH levels. To determine the transcriptional changes in progesterone receptor(PR), total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). As a result, delayed VO was shown in the DEHP group(PND $37.3{\pm}0.7$) compared to the control group(PND $35.3{\pm}0.7$; p<0.05). DEHP treatment significantly decreased the wet weight of ovaries and uteri compared to the control group(p<0.05). Interestingly, elevation of serum LH levels was shown in the DEHP group(p<0.05). Graafian follicles and corpora lutea were observed only in the ovaries from the control animals. Numerous primary, secondary follicles and small atretic follicles were observed in the ovaries from DEHP-treated animals. Similarly, hypotrophy of luminal and glandular uterine epithelium was found in the DEHP-treated group. These effects were probably due to the inhibitory effects of DEHP on the synthesis and secretion of estrogen from granulosa cells. In the semiquantitative RT-PCR studies, the transcriptional activities of PR in both ovary(p<0.05) and uterus(p<0.01) from DEHP-treated animals were significantly lower than those from the control animals. The present studies demonstrated that the acute exposure to DEHP during the critical period of prepubertal stage could inactivate the reproductive system resulting delayed puberty in female rats.

  • PDF