• 제목/요약/키워드: Preprocessing networks structure

검색결과 19건 처리시간 0.027초

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

패턴 정보량에 따른 신경망을 이용한 영상분류 (Image Classificatiion using neural network depending on pattern information quantity)

  • 이윤정;김도년;조동섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.959-961
    • /
    • 1995
  • The objective of most image proccessing applications is to extract meaningful information from one or more pictures. It is accomplished efficiently using neural networks, which is used in image classification and image recognition. In neural networks, background and meaningful information are processed with same weight in input layer. In this paper, we propose the image classification method using neural networks, especially EBP(Error Back Propagation). Preprocessing is needed. In preprocessing, background is compressed and meaningful information is emphasized. We use the quadtree approach, which is a hierarchical data structure based on a regular decomposition of space.

  • PDF

신경회로망을 이용한 냉연 표면흠 분류를 위한 계층적 분류기의 설계 (Design of Hierarchical Classifier for Classifying Defects of Cold Mill Strip using Neural Networks)

  • 김경민;류경;정우용;박귀태;박중조
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.499-505
    • /
    • 1998
  • In developing an automated surface inspect algorithm, we have designed a hierarchical classifier using neural network. The defects which exist on the surface of cold mill strip have a scattering or singular distribution. We have considered three major problems, that is preprocessing, feature extraction and defect classification. In preprocessing, Top-hit transform, adaptive thresholding, thinning and noise rejection are used Especially, Top-hit transform using local minimax operation diminishes the effect of bad lighting. In feature extraction, geometric, moment, co-occurrence matrix, and histogram ratio features are calculated. The histogram ratio feature is taken from the gray-level image. For defect classification, we suggest a hierarchical structure of which nodes are multilayer neural network classifiers. The proposed algorithm reduced error rate by comparing to one-stage structure.

  • PDF

Design of improved Mulit-FNN for Nonlinear Process modeling

  • Park, Hosung;Sungkwun Oh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.102.2-102
    • /
    • 2002
  • In this paper, the improved Multi-FNN (Fuzzy-Neural Networks) model is identified and optimized using HCM (Hard C-Means) clustering method and optimization algorithms. The proposed Multi-FNN is based on FNN and use simplified and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. We use a HCM clustering and genetic algorithms (GAs) to identify both the structure and the parameters of a Multi-FNN model. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNN according to the divisions of input-output space using I/O process data. Also, the parame...

  • PDF

DTW 거리 기반 kNN을 활용한 시계열 데이터 정보 추출 및 회귀 예측 (Exploring Time Series Data Information Extraction and Regression using DTW based kNN)

  • 양현준;임채국;정우혁;우지환
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.83-93
    • /
    • 2024
  • 본 연구는 도금욕 공정의 완성도 예측을 위한 시계열 데이터의 효과적인 표현을 목표로, Dynamic Time Warping(DTW) 및 k-Nearest Neighbors(kNN) 기반의 전처리 방법론을 제안한다. 제안된 DTW 기반 kNN 전처리 방법을 다양한 회귀 모델에 적용하여 비교한 결과, 기존 결정 나무(Decision tree) 대비 최대 RMSE에서 43%과 MAE에서 24% 개선된 성능 향상을 보였으며, 신경망 구조를 갖는 회귀 모델과 결합했을 때 성능 향상이 두드러졌다. 본 논문에서 제안하는 전처리 방법과 회귀 모델을 결합한 구조는 길이가 긴 시계열 데이터와 제한된 데이터 샘플이 있는 상황에서 적합할 것으로 사료되며, 데이터가 부족한 상황에서도 과적합의 위험을 감소시키며, 합리적인 예측을 가능하게 함을 시사한다. 그러나 DTW 및 kNN 알고리즘은 데이터 샘플이 많아질수록 연산량이 늘어난다는 한계가 존재하며, 향후 연구를 통해 이러한 계산 효율성의 문제를 개선할 수 있는 연구가 필요할 것으로 보인다.

A Study on the Recognition System of the Il-Pa Stenographic Character Images using EBP Algorithm

  • Kim, Sang-Keun;Park, Gwi-Tae
    • KIEE International Transaction on Systems and Control
    • /
    • 제12D권1호
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, we would study the applicability of neural networks to the recognition process of Korean stenographic character image, applying the classification function, which is the greatest merit of those of neural networks applied to the various parts so far, to the stenographic character recognition, relatively simple classification work. Korean stenographic recognition algorithms, which recognize the characters by using some methods, have a quantitative problem that despite the simplicity of the structure, a lot of basic characters are impossible to classify into a type. They also have qualitative one that It Is not easy to classify characters fur the delicacy of the character farms. Even though this is the result of experiment under the limited environment of the basic characters, this shows the possibility that the stenographic characters can be recolonized effectively by neural network system. In this system, we got 90.86% recognition rate as an average.

  • PDF

HCM 클러스터링 기반 FNN 구조 설계 (Design of FNN architecture based on HCM Clustering Method)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2821-2823
    • /
    • 2002
  • In this paper we propose the Multi-FNN (Fuzzy-Neural Networks) for optimal identification modeling of complex system. The proposed Multi-FNNs is based on a concept of FNNs and exploit linear inference being treated as generic inference mechanisms. In the networks learning, backpropagation(BP) algorithm of neural networks is used to updata the parameters of the network in order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM(Hard C-Means)clustering algorithm which carry out the input-output dat a preprocessing function and Genetic Algorithm which carry out optimization of model The HCM clustering method is utilized to determine the structure of Multi-FNNs. The parameters of Multi-FNN model such as apexes of membership function, learning rates, and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization abilities of the model. NOx emission process data of gas turbine power plant is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF

환율예측을 위한 신호처리분석 및 인공신경망기법의 통합시스템 구축 (A Hybrid System of Joint Time-Frequency Filtering Methods and Neural Network Techniques for Foreign Exchange Rate Forecasting)

  • 신택수;한인구
    • 지능정보연구
    • /
    • 제5권1호
    • /
    • pp.103-123
    • /
    • 1999
  • Input filtering as a preprocessing method is so much crucial to get good performance in time series forecasting. There are a few preprocessing methods (i.e. ARMA outputs as time domain filters, and Fourier transform or wavelet transform as time-frequency domain filters) for handling time series. Specially, the time-frequency domain filters describe the fractal structure of financial markets better than the time domain filters due to theoretically additional frequency information. Therefore, we, first of all, try to describe and analyze specially some issues on the effectiveness of different filtering methods from viewpoint of the performance of a neural network based forecasting. And then we discuss about neural network model architecture issues, for example, what type of neural network learning architecture is selected for our time series forecasting, and what input size should be applied to a model. In this study an input selection problem is limited to a size selection of the lagged input variables. To solve this problem, we simulate on analyzing and comparing a few neural networks having different model architecture and also use an embedding dimension measure as chaotic time series analysis or nonlinear dynamic analysis to reduce the dimensionality (i.e. the size of time delayed input variables) of the models. Throughout our study, experiments for integration methods of joint time-frequency analysis and neural network techniques are applied to a case study of daily Korean won / U. S dollar exchange returns and finally we suggest an integration framework for future research from our experimental results.

  • PDF

필기체 문자 영상의 이진화에 관한 연구 (A Study on Binarization of Handwritten Character Image)

  • 최영규;이상범
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권5호
    • /
    • pp.575-584
    • /
    • 2002
  • 온라인 필기체 문자 인식은 필기의 순서와 획의 위치를 알 수 있어 신경망을 이용한 자소의 효과적인 분할로 큰 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 동적인 정보와 시간적인 정보를 가지고 있지 않고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 불완전한 전처리를 수행하여야 하는 어려움을 가지고 있다. 따라서 오프라인 필기체 문자 인식은 다양한 방법의 연구가 필요하다. 본 논문에서는 Watershed 알고리즘을 오프라인 필기체 한글 문자 인식 전처리에 적용하였다. 여기서 Watershed 알고리즘의 수행 시간과 결과 영상의 품질을 고려해 Watershed 알고리즘 4단계에서 효과적인 적용방법을 제시하였다. 효과적으로 구성된 Watershed 알고리즘을 전처리에 적용함으로써 영상 향상과 이진화에 좋은 결과를 얻었다. 실험에서는 기존의 방법과 본 논문 방법을 수행 시간과 품질로써 평가했다. 실험 결과 기존의 방법은 평균 2.08초, 본 논문 방법은 평균 0.86초의 수행 시간이 걸렸다. 결과 영상의 품질은 본 논문 방법이 기존의 방법에 비하여 문자의 획 사이의 잡영을 효과적으로 처리하였다.

  • PDF

HCM과 유전자 알고리즘에 기반한 확장된 다중 FNN 모델 설계 (Design of Extended Multi-FNNs model based on HCM and Genetic Algorithm)

  • 박호성;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.420-423
    • /
    • 2001
  • In this paper, the Multi-FNNs(Fuzzy-Neural Networks) architecture is identified and optimized using HCM(Hard C-Means) clustering method and genetic algorithms. The proposed Multi-FNNs architecture uses simplified inference and linear inference as fuzzy inference method and error back propagation algorithm as learning rules. Here, HCM clustering method, which is carried out for the process data preprocessing of system modeling, is utilized to determine the structure of Multi-FNNs according to the divisions of input-output space using I/O process data. Also, the parameters of Multi-FNNs model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is used to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model we use the time series data for gas furnace and the NOx emission process data of gas turbine power plant.

  • PDF