• Title/Summary/Keyword: Preprocess

Search Result 178, Processing Time 0.023 seconds

Multiple Moving Objects Detection and Tracking Algorithm for Intelligent Surveillance System (지능형 보안 시스템을 위한 다중 물체 탐지 및 추적 알고리즘)

  • Shi, Lan Yan;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.741-747
    • /
    • 2012
  • In this paper, we propose a fast and robust framework for detecting and tracking multiple targets. The proposed system includes two modules: object detection module and object tracking module. In the detection module, we preprocess the input images frame by frame, such as gray and binarization. Next after extracting the foreground object from the input images, morphology technology is used to reduce noises in foreground images. We also use a block-based histogram analysis method to distinguish human and other objects. In the tracking module, color-based tracking algorithm and Kalman filter are used. After converting the RGB images into HSV images, the color-based tracking algorithm to track the multiple targets is used. Also, Kalman filter is proposed to track the object and to judge the occlusion of different objects. Finally, we show the effectiveness and the applicability of the proposed method through experiments.

A Study on the Gender and Age Classification of Speech Data Using CNN (CNN을 이용한 음성 데이터 성별 및 연령 분류 기술 연구)

  • Park, Dae-Seo;Bang, Joon-Il;Kim, Hwa-Jong;Ko, Young-Jun
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.11-21
    • /
    • 2018
  • Research is carried out to categorize voices using Deep Learning technology. The study examines neural network-based sound classification studies and suggests improved neural networks for voice classification. Related studies studied urban data classification. However, related studies showed poor performance in shallow neural network. Therefore, in this paper the first preprocess voice data and extract feature value. Next, Categorize the voice by entering the feature value into previous sound classification network and proposed neural network. Finally, compare and evaluate classification performance of the two neural networks. The neural network of this paper is organized deeper and wider so that learning is better done. Performance results showed that 84.8 percent of related studies neural networks and 91.4 percent of the proposed neural networks. The proposed neural network was about 6 percent high.

Face Detection Method based Fusion RetinaNet using RGB-D Image (RGB-D 영상을 이용한 Fusion RetinaNet 기반 얼굴 검출 방법)

  • Nam, Eun-Jeong;Nam, Chung-Hyeon;Jang, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.4
    • /
    • pp.519-525
    • /
    • 2022
  • The face detection task of detecting a person's face in an image is used as a preprocess or core process in various image processing-based applications. The neural network models, which have recently been performing well with the development of deep learning, are dependent on 2D images, so if noise occurs in the image, such as poor camera quality or pool focus of the face, the face may not be detected properly. In this paper, we propose a face detection method that uses depth information together to reduce the dependence of 2D images. The proposed model was trained after generating and preprocessing depth information in advance using face detection dataset, and as a result, it was confirmed that the FRN model was 89.16%, which was about 1.2% better than the RetinaNet model, which showed 87.95%.

A Study on Recognition of Dangerous Behaviors using Privacy Protection Video in Single-person Household Environments

  • Lim, ChaeHyun;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.47-54
    • /
    • 2022
  • Recently, with the development of deep learning technology, research on recognizing human behavior is in progress. In this paper, a study was conducted to recognize risky behaviors that may occur in a single-person household environment using deep learning technology. Due to the nature of single-person households, personal privacy protection is necessary. In this paper, we recognize human dangerous behavior in privacy protection video with Gaussian blur filters for privacy protection of individuals. The dangerous behavior recognition method uses the YOLOv5 model to detect and preprocess human object from video, and then uses it as an input value for the behavior recognition model to recognize dangerous behavior. The experiments used ResNet3D, I3D, and SlowFast models, and the experimental results show that the SlowFast model achieved the highest accuracy of 95.7% in privacy-protected video. Through this, it is possible to recognize human dangerous behavior in a single-person household environment while protecting individual privacy.

Method of preventing Pressure Ulcer and EMR data preprocess

  • Kim, Dowon;Kim, Minkyu;Kim, Yoon;Han, Seon-Sook;Heo, Jungwon;Choi, Hyun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.69-76
    • /
    • 2022
  • This paper proposes a method of refining and processing time-series data using Medical Information Mart for Intensive Care (MIMIC-IV) v2.0 data. In addition, the significance of the processing method was validated through a machine learning-based pressure ulcer early warning system using a dataset processed based on the proposed method. The implemented system alerts medical staff in advance 12 and 24 hours before a lesion occurs. In conjunction with the Electronic Medical Record (EMR) system, it informs the medical staff of the risk of a patient's pressure ulcer development in real-time to support a clinical decision, and further, it enables the efficient allocation of medical resources. Among several machine learning models, the GRU model showed the best performance with AUROC of 0.831 for 12 hours and 0.822 for 24 hours.

MLOps workflow language and platform for time series data anomaly detection

  • Sohn, Jung-Mo;Kim, Su-Min
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.19-27
    • /
    • 2022
  • In this study, we propose a language and platform to describe and manage the MLOps(Machine Learning Operations) workflow for time series data anomaly detection. Time series data is collected in many fields, such as IoT sensors, system performance indicators, and user access. In addition, it is used in many applications such as system monitoring and anomaly detection. In order to perform prediction and anomaly detection of time series data, the MLOps platform that can quickly and flexibly apply the analyzed model to the production environment is required. Thus, we developed Python-based AI/ML Modeling Language (AMML) to easily configure and execute MLOps workflows. Python is widely used in data analysis. The proposed MLOps platform can extract and preprocess time series data from various data sources (R-DB, NoSql DB, Log File, etc.) using AMML and predict it through a deep learning model. To verify the applicability of AMML, the workflow for generating a transformer oil temperature prediction deep learning model was configured with AMML and it was confirmed that the training was performed normally.

Study on Difference of Wordvectors Analysis Induced by Text Preprocessing for Deep Learning (딥러닝을 위한 텍스트 전처리에 따른 단어벡터 분석의 차이 연구)

  • Ko, Kwang-Ho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.489-495
    • /
    • 2022
  • It makes difference to LSTM D/L(Deep Learning) results for language model construction as the corpus preprocess changes. An LSTM model was trained with a famouse literaure poems(Ki Hyung-do's work) for training corpus in the study. You get the two wordvector sets for two corpus sets of the original text and eraised word ending text each once D/L training completed. It's been inspected of the similarity/analogy operation results, the positions of the wordvectors in 2D plane and the generated texts by the language models for the two different corpus sets. The suggested words by the silmilarity/analogy operations are changed for the corpus sets but they are related well considering the corpus characteristics as a literature work. The positions of the wordvectors are different for each corpus sets but the words sustained the basic meanings and the generated texts are different for each corpus sets also but they have the taste of the original style. It's supposed that the D/L language model can be a useful tool to enjoy the literature in object and in diverse with the analysis results shown in the study.

Data Preprocessing Technique and Service Operation Architecture for Demand Forecasting of Electric Vehicle Charging Station (전기자동차 충전소 수요 예측 데이터 전처리 기법 및 서비스 운영 아키텍처)

  • Joongi Hong;Suntae Kim;Jeongah Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.131-138
    • /
    • 2023
  • Globally, the eco-friendly industry is developing due to the climate crisis. Electric vehicles are an eco-friendly industry that is attracting attention as it is expected to reduce carbon emissions by 30~70% or more compared to internal combustion engine vehicles. As electric vehicles become more popular, charging stations have become an important factor for purchasing electric vehicles. Recent research is using artificial intelligence to identify local demand for charging stations and select locations that can maximize economic impact. In this study, in order to contribute to the improvement of the performance of the electric vehicle charging station demand prediction model, nationwide data that can be used in the artificial intelligence model was defined and a pre-processing technique was proposed. In addition, a preprocessor, artificial intelligence model, and service web were implemented for real charging station demand prediction, and the value of data as a location selection factor was verified.

Study of Posture Evaluation Method in Chest PA Examination based on Artificial Intelligence (인공지능 기반 흉부 후전방향 검사에서 자세 평가 방법에 관한 연구)

  • Ho Seong Hwang;Yong Seok Choi;Dae Won Lee;Dong Hyun Kim;Ho Chul Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Chest PA is the basic examination of radiographic imaging. Moreover, Chest PA's demands are constantly increasing because of the Increase in respiratory diseases. However, it is not meeting the demand due to problems such as a shortage of radiological technologist, sexual shame caused by patient contact, and the spread of infectious diseases. There have been many cases of using artificial intelligence to solve this problem. Therefore, the purpose of this research is to build an artificial intelligence dataset of Chest PA and to find a posture evaluation method. To construct the posture dataset, the posture image is acquired during actual and simulated examination and classified correct and incorrect posture of the patient. And to evaluate the artificial intelligence posture method, a posture estimation algorithm is used to preprocess the dataset and an artificial intelligence classification algorithm is applied. As a result, Chest PA posture dataset is validated with in over 95% accuracy in all artificial intelligence classification and the accuracy is improved through the Top-Down posture estimation algorithm AlphaPose and the classification InceptionV3 algorithm. Based on this, it will be possible to build a non-face-to-face automatic Chest PA examination system using artificial intelligence.

Verification of educational goal of reading area in Korean SAT through natural language processing techniques (대학수학능력시험 독서 영역의 교육 목표를 위한 자연어처리 기법을 통한 검증)

  • Lee, Soomin;Kim, Gyeongmin;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • The major educational goal of reading part, which occupies important portion in Korean language in Korean SAT, is to evaluated whether a given text can be fully understood. Therefore given questions in the exam must be able to solely solvable by given text. In this paper we developed a datatset based on Korean SAT's reading part in order to evaluate whether a deep learning language model can classify if the given question is true or false, which is a binary classification task in NLP. In result, by applying language model solely according to the passages in the dataset, we were able to acquire better performance than 59.2% in F1 score for human performance in most of language models, that KoELECTRA scored 62.49% in our experiment. Also we proved that structural limit of language models can be eased by adjusting data preprocess.