• Title/Summary/Keyword: Premixed Charge Diesel Combustion

Search Result 33, Processing Time 0.019 seconds

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Premixed Gasoline/Pilot Diesel (디젤 엔진에서 예혼합 가솔린/파일럿 디젤 이종연료의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Minjae;Lim, Jonghan;Kang, Kernyong;Lee, Seokhwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • It is known that diesel engines have the disadvantage of high emission levels of NOx and PM. Therefore, many combustion strategies have been developed to reduce these harmful NOx and PM emissions in a diesel engine. Among these strategies, HCCI(Homogeneous Charge Compression Ignition) and PCCI(Premixed Charge Compression Ignition) are the most popular as these can reduce NOx and PM simultaneously. However, when a single fuel like diesel is applied, it is difficult to control the combustion phase and this can lead to power reduction. In this study, premixed gasoline and pilot diesel were used to overcome the problems of controllability of the combustion phase and harmful emissions. We injected gasoline directly into the combustion chamber and the gasoline/air mixture was ignited with a pilot diesel fuel near the top dead center. The results showed that the combustion and emission characteristics of dual-fuel combustion were comparable to those of conventional diesel combustion. When we applied the dual-fuel PCCI combustion concept, more than 90 % of NOx and PM emission was reduced simultaneously without significant degradation of efficiency compared to conventional diesel combustion.

Diesel Knock Visualization of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle (협각 인젝터를 이용한 예혼합 압축착화 연소에서의 디젤 노킹 가시화)

  • Park, Stephen S.;Jung, Yongjin;Bae, Choongsik
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.101-104
    • /
    • 2012
  • In this work, in-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single cylinder diesel engine with premixed charge compression ignition combustion and a narrow injection angle. The results show that the frequency ranges of pressure ringing were 8.35 to 9 kHz and 12..2 to 13.1 kHz. The frequencies of the flame movement were shown as 8.7 kHz and 13 kHz. It was found that there is a direct relationship between the pressure ringing and the flame movement.

  • PDF

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine using Mixed Fuels (혼합연료를 이용한 예혼합 압축착화 디젤엔진의 연소특성)

  • 조병호;이기형;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.58-64
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of CO2, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge compression ignition(PCCI), is focused among the various corresponding manners. In this study, we investigated the combustion characteristics of PCCI engine using a mixed fuels with that of commercial diesel engine. Finally we grasped a emission characteristics of PCCI engine. From this experiment, it could be found that NOx reduction is caused by the lower maximum temperature and soot reduction is caused by rapid combustion under diffusion combustion part. Also, it was found that 1st-combustion(cool flame) and 2nd-combustion(hot flame) is appeared in heat release curve, exhaust gas temperature is diminished and combustion variation is increased according to increasing of gasoline ratio.

Effects of Injection Strategies on the Partial Premixed Charge Combustion and Emission Characteristics in a Diesel Engine (디젤엔진의 부분 예혼합 연소 및 배기 특성에 대한 분사전략의 영향)

  • Kim, Jaewoong;Kim, Yungjin;Park, Sangki;Lee, Kihyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.83-88
    • /
    • 2013
  • Recently, PCCI (premixed charge compression ignition) combustion is studied to reduce both NOx and PM because of homogeneous mixture formation and lower combustion temperature. It has also merit of increasing thermal efficiency owing to better air-fuel mixure. However, it is well known that PCCI combustion has a weakness in fuel economy because PCCI combustion tends to start before TDC. Therefore, it is necessary to find an optimal conditions for PCCI combustion which maintains reduction of NOx, PM and increase of thermal efficiency. In this study, pPCCI combustion was realized by adding early injection strategy to a conventional diesel engine. In addition, the characteristics of pPCCI combustion was analized by comparing conventional diesel injection strategy. The results show that NOx and PM per power in pPCCI combution were reduced compared to a conventional diesel combustion.

Effects of Pilot Injection Method Following the Main Injection on Ignition Promotion and Exhaust Gas Reduction in a Diesel-Fueled HCCI Engine (디젤 예혼합압축착화엔진에서 주연료 분사 후 점화 연료 분사 방법을 통한 점화 촉진과 배기가스 개선 효과)

  • Kook, Sang-Hoon;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.27-32
    • /
    • 2003
  • Diesel-Fueled HCCI(Homogeneous Charge Compression Ignition) Engine is an advanced combustion process explained as a premixed charge of diesel fuel and air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Also PM could be reduced by the premixed combustion and no fuel-rich zones. But HCCI couldn't be realized because of the difficulties in vaporizing the diesel, control of combustion phase directly. To solve these problems, new fuel injection strategy, explained as the pilot fuel injection to promote ignition near TDC following the main fuel injection at the extremely advanced timing, is applied during the compression ratio is varied from 18.9:1 to 27.7:1 This is not a pilot fuel to promote the ignition but also the direct control method of the combustion phase. Experimental result shows the pilot fuel injection promote the ignition and the compression ignition of the HCCI engine is achieved as compression ratio becomes higher. Also there is an optimal pilot fuel injection timing for the HCCI combustion. NOx is reduced more than 90% compared to DI-Diesel case but PM and THC emission needs more investigation.

  • PDF

Homogeneous Charge Compression Ignition Combustion and Exhaust Characteristics of a Common-rail Diesel Engine (커먼레일 디젤 엔진의 균일 예혼합 연소 및 배기특성)

  • Yoon, Seung-Hyun;Lee, Doo-Jin;Kim, Myung-Yoon;Lee, Je-Hung;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.75-81
    • /
    • 2005
  • An experimental study on homogeneous charge compression ignition combustion with direct fuel injection was conducted using a single cylinder common-rail diesel engine. To improve the homogeneity of fuel-air mixture, the premixed fuel (gasoline) was injected into premixing chamber and the diesel fuel was injected into the combustion chamber as an ignition source for the gasoline premixture. The experimental results show that soot emissions were dramatically reduced with the increase of fuel premixing ratio, however incomplete products such as HC and CO increased with the increase of the premixed ratio. Earlier injection of Dl diesel fuel increased the IMEP with the decrease of HC and CO concentrations.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

DME and Diesel HCCI Combustion Characteristics (DME와 Diesel의 HCCI 연소특성 비교)

  • Lee, Joo-Kwang;Kook, Sang-Hoon;Park, Cheol-Woong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.231-236
    • /
    • 2003
  • HCCI(Homogeneous Charge Compression Ignition) combustion is an advanced combustion process explained as a homogeneously premixed charge of a fuel where air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Particulate matters (PM) could be also reduced by the homogeneous combustion and no fuel-rich zones. Injection timing is extremely advanced to achieve homogeneous charge where a diesel fuel could not be vaporized sufficiently due to low pressure and low temperature condition. Also the over-penetration could be a severe problem. The small injection angle and multi-hole injectors were applied to solve these problems. Dimethyl ether (DME) as an altenative fuel was also applied to relive the bad vaporization problem associated with early injection of diesel fuel. Neat DME has a very high cetane rating and high vapor pressure. Contained oxygen reduces soot during the combustion. Experimental result shows DME can be easily operated in an HCCI engine. PM shows almost zero value and NOx is reduced more than 90% compared to direct-injection diesel engine operating mode but problem of early ignition needs more investigation.

  • PDF

A Study on the Characteristics of Mixture Formation and Combustion in the Premixed Charge Compression Ignition Engine (예혼합 압축착화 엔진의 혼합기 형성 및 연소 특성에 관한 연구)

  • Kim, Hyung-Min;Ryu, Jea-Duk;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2006
  • Recently, there has been an interest in premixed diesel engines as it has the potential of achieving a more homogeneous and leaner mixture close to TDC compared to conventional diesel engines. Because this concept reduced NOx and smoke emissions simultaneously. Early studies are shown that in a HCCI(Homogeneous Charge Compression Ignition) engine, the fuel injection timing and intake air temperature affect the mixture formation. The purpose of this study is to investigate characteristics of combustion and mixture formation according to injection timing and intake air temperature in a common rail direct injection type HCCI engine using an early injection method called the PCCI(Premixed Charge Compression Ignition). From this study, we found that the fuel injection timing and intake air temperature affect the mixture formation and in turn affects combustion in the PCCI engine.

A Study on the Mixture Formation Process and Combustion Characteristics According to Injection Timing in Premixed Charge Compression Ignition (예혼합 압축착화 디젤엔진의 분사시기 변화에 따른 혼합기 형성 과정 및 연소 특성에 관한 연구)

  • Cho, Byung-Ho;Han, Yong-Tak;Lee, Ki-Hyung;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1692-1698
    • /
    • 2002
  • A diesel engine has various merits such as high thermal-efficiency, superior fuel consumption and durability. Therefore the number of diesel engine in the world is increasing. As the seriousness of environmental pollution increases in the world, the method to reduce the noxious materials of $CO_2$, NOx and P.M. is very important subject to correspond to exhaust gas regulations. A new concept, so called premixed charge diesel combustion(PCCI), is focused among the various corresponding manners. In this study, we investigated the mixture formation within the cylinder with injection timing using GTT simulation code and also compared combustion characteristics of PCCI engine with that of commercial diesel engine. From this experiments, it could be found that homogeneous mixture formation was observed according to advance of injection timing and simultaneous reduction of NOx and Soot in injection timing of BTDC 60$^{\circ}$.