• Title/Summary/Keyword: Premature Ventricular Contraction

Search Result 49, Processing Time 0.022 seconds

Personalized Specific Premature Contraction Arrhythmia Classification Method Based on QRS Features in Smart Healthcare Environments

  • Cho, Ik-Sung
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.212-217
    • /
    • 2021
  • Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.

Classification of Premature Ventricular Contraction using Error Back-Propagation

  • Jeon, Eunkwang;Jung, Bong-Keun;Nam, Yunyoung;Lee, HwaMin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.2
    • /
    • pp.988-1001
    • /
    • 2018
  • Arrhythmia has recently emerged as one of the major causes of death in Koreans. Premature Ventricular Contraction (PVC) is the most common arrhythmia that can be found in clinical practice, and it may be a precursor to dangerous arrhythmias, such as paroxysmal insomnia, ventricular fibrillation, and coronary artery disease. Therefore, we need for a method that can detect an abnormal heart beat and diagnose arrhythmia early. We extracted the features corresponding to the QRS pattern from the subject's ECG signal and classify the premature ventricular contraction waveform using the features. We modified the weighting and bias values based on the error back-propagation algorithm through learning data. We classify the normal signal and the premature ventricular contraction signal through the modified weights and deflection values. MIT-BIH arrhythmia data sets were used for performance tests. We used RR interval, QS interval, QR amplitude and RS amplitude features. And the hidden layer with two nodes is composed of two layers to form a total three layers (input layer 0, output layer 3).

R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments (스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법)

  • Cho, Iksung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.17 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

Assessment of Premature Ventricular Contraction Arrhythmia by K-means Clustering Algorithm

  • Kim, Kyeong-Seop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.65-72
    • /
    • 2017
  • Premature Ventricular Contraction(PVC) arrhythmia is most common abnormal-heart rhythm that may increase mortal risk of a cardiac patient. Thus, it is very important issue to identify the specular portraits of PVC pattern especially from the patient. In this paper, we propose a new method to extract the characteristics of PVC pattern by applying K-means machine learning algorithm on Heart Rate Variability depicted in Poinecare plot. For the quantitative analysis to distinguish the trend of cluster patterns between normal sinus rhythm and PVC beat, the Euclidean distance measure was sought between the clusters. Experimental simulations on MIT-BIH arrhythmia database draw the fact that the distance measure on the cluster is valid for differentiating the pattern-traits of PVC beats. Therefore, we proposed a method that can offer the simple remedy to identify the attributes of PVC beats in terms of K-means clusters especially in the long-period Electrocardiogram(ECG).

Premature Ventricular Contraction Classification through R Peak Pattern and RR Interval based on Optimal R Wave Detection (최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require higher computational cost and larger processing time. Therefore it is necessary to design efficient algorithm that classifies PVC(premature ventricular contraction) and decreases computational cost by accurately detecting feature point based on only R peak through optimal R wave. For this purpose, we detected R wave through optimal threshold value and extracted RR interval and R peak pattern from noise-free ECG signal through the preprocessing method. Also, we classified PVC in realtime through RR interval and R peak pattern. The performance of R wave detection and PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30. The achieved scores indicate the average of 99.02% in R wave detection and the rate of 94.85% in PVC classification.

Assessment of PVC (Premature Ventricular Contraction) Arrhythmia by R-R Interval in ECG (심전도 R-R 간격 정보를 이용한 심실조기수축 부정맥 검출)

  • Yoon, Tae-Ho;Lee, Sun-Ju;Kim, Kyeong-Seop;Lee, Jeong-Whan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.15-21
    • /
    • 2009
  • This paper proposes a novel algorithm to assess the abnormal heart beats such as PVC (Premature Ventricular Contraction) and its subsequent RUNs. Our Arrhythmic detection scheme is based on only the R-R Interval features extracted from ECG waveforms and MIT-BIH arrhythmia database is evaluated to validate the efficiency of our algorithm in terms of sensitivity, specificity, FPR(%) and FNR(%).

  • PDF

Minimum Fuzzy Membership Function Extraction for Automatic Premature Ventricular Contraction Detection (자동 조기심실수축 탐지를 위한 최소 퍼지소속함수의 추출)

  • Lim, Joon-Shik
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.125-132
    • /
    • 2007
  • This paper presents an approach to detect premature ventricular contractions(PVC) using the neural network with weighted fuzzy membership functions(NEWFM), NEWFM classifies normal and PVC beats by the trained weighted fuzzy membership functions using wavelet transformed coefficients extracted from the MIT-BIH PVC database. The eight most important coefficients of d3 and d4 are selected by the non-overlap area distribution measurement method. The selected 8 coefficients are used for 3 data sets showing reliable accuracy rates 99,80%, 99,21%, and 98.78%, respectively, which means the selected input features are less dependent to the data sets. The ECG signal segments and fuzzy membership functions of the 8 coefficients enable input features to interpret explicitly.

  • PDF

A Case Report of a Premature Ventricular Contraction Patient with Dizziness and Chest Discomfort Using Gagam-Samryoungbeakchul-san (조기심실수축으로 현훈 및 흉부 불편감을 호소하는 환자에 대한 가감삼령백출산의 효과 증례보고 1례)

  • Cho, Jae-hyun;Hong, Min-na;Park, Hye-lim;Choi, Jin-yong;Bae, Go-eun;Lee, In;Kwon, Jung-nam;Han, Chang-woo;Kim, So-yeon;Choi, Jun-yong;Park, Seong-ha;Yun, Young-ju;Hong, Jin-woo
    • The Journal of Internal Korean Medicine
    • /
    • v.37 no.5
    • /
    • pp.796-805
    • /
    • 2016
  • Objective: To examine the effects of Gagam-Samryoungbeakchul-san (加減 蔘苓白朮散) on a premature ventricular contraction patient with dizziness and chest discomfort. Methods: A patient diagnosed with premature ventricular contraction was treated with herbal medicine and acupuncture. The period of admission was 15 days, and we measured the electrocardiogram before and after treatment. We evaluated the improvement in symptoms by Global Assessment (G/A), and checked the pulse rate by oximetry three times a day. We estimated the efficacy of treatment by analyzing the relationship between the average pulse rate and symptoms. Results: After Gagam-Samryoungbeakchul-san treatment and acupuncture therapy, the average pulse rate increased from 36.5 to 58. This increase in average pulse rate was accompanied by a reduction in dizziness of 40%, chest discomfort of 30%, and frequency of bigeminy in the electrocardiogram. Conclusions: This case report confirmed the effectiveness of Gagam-Samryoungbeakchul-san on premature ventricular contraction, but further study is warranted.

Patient Adaptive Pattern Matching Method for Premature Ventricular Contraction(PVC) Classification (조기심실수축(PVC) 분류를 위한 환자 적응형 패턴 매칭 기법)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.2021-2030
    • /
    • 2012
  • Premature ventricular contraction(PVC) is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Particularly, in the healthcare system that must continuously monitor patient's situation, it is necessary to process ECG (Electrocardiography) signal in realtime. In other words, the design of algorithm that exactly detects R wave using minimal computation and classifies PVC by analyzing the persons's physical condition and/or environment is needed. Thus, the patient adaptive pattern matching algorithm for the classification of PVC is presented in this paper. For this purpose, we detected R wave through the preprocessing method, adaptive threshold and window. Also, we applied pattern matching method to classify each patient's normal cardiac behavior through the Hash function. The performance of R wave detection and abnormal beat classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.33% in R wave detection and the rate of 0.32% in abnormal beat classification error.

Characterization of Premature Ventricular Contraction by K-Means Clustering Learning Algorithm with Mean-Reverting Heart Rate Variability Analysis (평균회귀 심박변이도의 K-평균 군집화 학습을 통한 심실조기수축 부정맥 신호의 특성분석)

  • Kim, Jeong-Hwan;Kim, Dong-Jun;Lee, Jeong-Whan;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1072-1077
    • /
    • 2017
  • Mean-reverting analysis refers to a way of estimating the underlining tendency after new data has evoked the variation in the equilibrium state. In this paper, we propose a new method to interpret the specular portraits of Premature Ventricular Contraction(PVC) arrhythmia by applying K-means unsupervised learning algorithm on electrocardiogram(ECG) data. Aiming at this purpose, we applied a mean-reverting model to analyse Heart Rate Variability(HRV) in terms of the modified poincare plot by considering PVC rhythm as the component of disrupting the homeostasis state. Based on our experimental tests on MIT-BIH ECG database, we can find the fact that the specular patterns portraited by K-means clustering on mean-reverting HRV data can be more clearly visible and the Euclidean metric can be used to identify the discrepancy between the normal sinus rhythm and PVC beats by the relative distance among cluster-centroids.