• 제목/요약/키워드: Preliminary engineering design

검색결과 880건 처리시간 0.032초

계층화 분석방법을 활용한 한국형 자율주행자동차 윤리 가이드라인 중요도 분석 연구 (An Importance Analysis of The Korean Ethical Guideline for Automated Vehicle Using AHP Method)

  • 황기연;송재인;강민희;임이정
    • 한국ITS학회 논문지
    • /
    • 제19권1호
    • /
    • pp.107-120
    • /
    • 2020
  • 본 연구는 한국형 자율주행자동차 윤리 가이드라인 제정에 앞서, 제안된 윤리 가이드라인 초안을 구성하는 항목에 대한 중요도를 확인하고자 핵심 요소와 세부항목에 대한 설문조사 결과를 활용하여 계층화 분석을 수행하였다. 분석 결과, 인간의 존엄성과 생명을 최우선으로 보장해야함을 내포한 문항의 중요도가 높게 평가되었으며, 사고 발생을 미연에 방지하고 사고가 발생하였을 때 차량 이용자의 책임이 있어야한다는 중요도가 높게 평가되었다. 그러나 정부부처 및 관리자의 역할에 대해서는 중요도가 낮게 평가되었는데, 이는 법적 규제를 통한 무조건적인 규제 대신 개인의 영역을 존중하고 공공의 이익을 동시에 향유할 수 있는 방안을 도출할 필요가 있다는 의견으로 사료된다. 향후 자율주행자동차의 윤리 가이드라인의 제정을 위해서는 지속적인 의견수렴 및 항목의 보완과 함께 관련 교육 및 세미나 등을 통해 사회적 수용성을 확보할 수 있는 방안을 강구해야 할 것으로 판단된다.

국도 아스팔트 포장 파손예측모델 개발을 위한 장기 관측 구간 선정에 관한 연구 (Selection of Long-Term Pavement Performance Sections for Development of Distress Prediction Model in National Asphalt Pavement)

  • 권수안;유평준;김기현;조윤호
    • 한국도로학회논문집
    • /
    • 제4권1호
    • /
    • pp.123-134
    • /
    • 2002
  • 본 연구에서는 국도 아스팔트 포장의 포장파손예측모델을 개발하기 위한 장기 공용성 관측 구간을 선정하였다. 관측 구간의 선정을 위하여 신설 포장 구간 및 덧씌우기 포장 구간에 대한 실험계획표를 작성하였고, 실험계획표의 각 셀에 해당되는 구간은 국도 데이터 베이스를 이용하여 예비 관측 구간을 선정하였고, 현장 조사를 통하여 최종 관측 구간을 선정하였다. 선정된 관측 구간의 단위 연장은 200m이며, 신설 포장 구간 47개소 및 덧씌우기 포장 구간 48개소가 선정되었다. 선정된 관측 구간에 대하여 시간의 변화 또는 교통량의 변화에 따른 포장 상태를 바탕으로 균열 및 러팅에 관한 1차 분석 작업을 진행하였다. 향후 포장 관련 다양한 정보가 데이터 베이스에 구축된 후 통계분석을 통하여 포장 파손 예측 모형이 개발되어야 할 것이다.

  • PDF

원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구 (Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem)

  • 정옥철;안상일;정대원;김은규;방효충
    • 한국항공우주학회지
    • /
    • 제43권8호
    • /
    • pp.692-698
    • /
    • 2015
  • 본 논문에서는 원형 제한 3체 문제의 불변위상공간을 이용하여 지구-달 또는 행성간의 궤적을 설계하고 해석하는 기법을 소개한다. 2체 문제를 조합하는 고전적인 방식 대신에 원형 제한 3체 문제에 대한 운동방정식, 궤적의 동적 특성, 평형점 주변의 리아프누프 궤도와 불변위상공간의 특성을 기술한다. 원형 제한 3체 문제의 불변위상공간을 이용했을 때, 지구-달 시스템의 궤적설계 방식과 태양-목성 시스템의 경계면에서의 초기조건에 따른 궤적 특성을 수치 시뮬레이션을 통해 확인한다. 본 논문에서 제안한 원형 제한 3체 문제의 불변위상공간을 이용한 궤적설계 기법은 저추력 또는 저에너지를 이용한 달탐사 또는 행성탐사 임무 등에 활용 가능할 것이다.

하이브리드 중간층 지진격리시스템의 고층 건물 진동 제어 성능 평가 (Vibration Control Performance Evaluation of Hybrid Mid-Story Isolation System for a Tall Building)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제18권3호
    • /
    • pp.37-44
    • /
    • 2018
  • A base isolation system is widely used to reduce seismic responses of low-rise buildings. This system cannot be effectively applied to high-rise buildings because the initial stiffness of the high-rise building with the base isolation system maintains almost the same as the building without the base isolation system to set the yield shear force of the base isolation system larger than the design wind load. To solve this problem, the mid-story isolation system was proposed and applied to many buildings. The mid-story isolation system has two major objectives; first to reduce peak story drift and second to reduce peak drift of the isolation story. Usually, these two objectives are in conflict. In this study, a hybrid mid-story isolation system for a tall building is proposed. A MR (magnetorheological) damper was used to develop the hybrid mid-story isolation system. An existing building with mid-story isolation system, that is "Shiodome Sumitomo Building" a high rise building having a large atrium in the lower levels, was used for control performance evaluation of the hybrid mid-story isolation system. Fuzzy logic controller and genetic algorithm were used to develop the control algorithm for the hybrid mid-story isolation system. It can be seen from analytical results that the hybrid mid-story isolation system can provide better control performance than the ordinary mid-story isolation system and the design process developed in this study is useful for preliminary design of the hybrid mid-story isolation system for a tall building.

Numerical Simulation of Wave Breaking Near Ship Bow

  • Lee, Young-Gill;Kim, Nam-Chul;Yu, Jin-Won;Choi, Si-Young
    • Journal of Ship and Ocean Technology
    • /
    • 제12권1호
    • /
    • pp.16-27
    • /
    • 2008
  • The interaction between advancing ships and the waves generated by them plays important roles in wave resistances and ship motions. Wave breaking phenomena near the ship bow at different speeds are investigated both numerically and experimentally. Numerical simulations of free surface profiles near the fore bodies of ships are performed and visualized to grasp the general trend or the mechanism of wave breaking phenomena from moderate waves rather than concentrating on local chaotic irregularities as ship speeds increase. Navier-Stokes equations are differentiated based on the finite difference method. The Marker and Cell (MAC) Method and Marker-Density Method are employed, and they are compared for the description of free surface conditions associated with the governing equations. Extra effort has been directed toward the realization of extremely complex free surface conditions at wave breaking. For this purpose, the air-water interface is treated with marker density, which is used for two layer flows of fluids with different properties. Adaptation schemes and refinement of the numerical grid system are also used at local complex flows to improve the accuracy of the solutions. In addition to numerical simulations, various model tests are performed in a ship model towing tank. The results are compared with numerical calculations for verification and for realizing better, more efficient research performance. It is expected that the present research results regarding wave breaking and the geometry of the fore body of ship will facilitate better hull form design productivity at the preliminary ship design stage, especially in the case of small and fast ship design. Also, the obtained knowledge on the impact due to the interaction of breaking waves and an advancing hull surface is expected to be applicable to investigation of the ship bow slamming problem as a specific application.

Thermal-hydraulic analysis of a new conceptual heat pipe cooled small nuclear reactor system

  • Wang, Chenglong;Sun, Hao;Tang, Simiao;Tian, Wenxi;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.19-26
    • /
    • 2020
  • Small nuclear reactor features higher power capacity, longer operation life than conventional power sources. It could be an ideal alternative of existing power source applied for special equipment for terrestrial or underwater missions. In this paper, a 25kWe heat pipe cooled reactor power source applied for multiple use is preliminary designed. Based on the design, a thermal-hydraulic analysis code for heat pipe cooled reactor is developed to analyze steady and transient performance of the designed nuclear reactor. For reactor design, UN fuel with 65% enrichment and potassium heat pipes are adopted in the reactor core. Tungsten and LiH are adopted as radiation shield on both sides of the reactor core. The reactor is controlled by 6 control drums with B4C neutron absorbers. Thermoelectric generator (TEG) converts fission heat into electricity. Cooling water removes waste heat out of the reactor. The thermal-hydraulic characteristics of heat pipes are simulated using thermal resistance network method. Thermal parameters of steady and transient conditions, such as the temperature distribution of every key components are obtained. Then the postulated reactor accidents for heat pipe cooled reactor, including power variation, single heat pipe failure and cooling channel blockage, are analyzed and evaluated. Results show that all the designed parameters satisfy the safety requirements. This work could provide reference to the design and application of the heat pipe cooled nuclear power source.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

Neutronic design and evaluation of the solid microencapsulated fuel in LWR

  • Deng, Qianliang;Li, Songyang;Wang, Dingqu;Liu, Zhihong;Xie, Fei;Zhao, Jing;Liang, Jingang;Jiang, Yueyuan
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3095-3105
    • /
    • 2022
  • Solid Microencapsulated Fuel (SMF) is a type of solid fuel rod design that disperses TRISO coated fuel particles directly into a kind of matrix. SMF is expected to provide improved performance because of the elimination of cladding tube and associated failure mechanisms. This study focused on the neutronics and some of the fuel cycle characteristics of SMF by using OpenMC. Two kinds of SMFs have been designed and evaluated - fuel particles dispersed into a silicon carbide matrix and fuel particles dispersed into a zirconium matrix. A 7×7 fuel assembly with increased rod diameter transformed from the standard NHR200-II 9×9 array was also introduced to increase the heavy metal inventory. A preliminary study of two kinds of burnable poisons (Erbia & Gadolinia) in two forms (BISO and QUADRISO particles) was also included. This study found that SMF requires about 12% enriched UN TRISO particles to match the cycle length of standard fuel when loaded in NHR200-II, which is about 7% for SMF with increased rod diameter. Feedback coefficients are less negative through the life of SMF than the reference. And it is estimated that the average center temperature of fuel kernel at fuel rod centerline is about 60 K below that of reference in this paper.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

복합강구조물 설계에 정성분석기법을 적용하기 위한 기초연구 (Fundamental Study on the Design of Steel Tube Structures Based on the Qualitative Analysis)

  • 강현식;임서형;박용걸
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.149-156
    • /
    • 2006
  • 강관은 그 효용성, 디자인적인 심미성, 그리고 건축 기술의 발전으로 건설시장에서 주요 부재로 널리 사용되고 있다. 그러나 많은 불확실성과 다양한 변수들을 다루는 강관 접합부 상용 프로그램이 확고하게 정착되어 있지는 않다. 본 연구에서는 정성분석 프로그램이 소개되어 있으며 그 분석 결과는 2차원적인 영역으로 결과를 제시해 주고 있기 때문에 많은 경험과 지식이 없는 엔지니어들에게 유용한 자료가 될 것으로 사료된다. 실제로 비렌딜 트러스 설계 예제를 통해 캐나다와 국내 규준, 이론해석 결과와의 비교, 그리고 정성분석 프로그램의 예비 설계 적용 가능성을 확인하였다.