• Title/Summary/Keyword: Preliminary conceptual design

Search Result 113, Processing Time 0.027 seconds

Preliminary Design Program for a High Thrust Liquid Rocket-Engine : Dynamic Characteristic Prediction Program Overview and Technical Achievements (대추력 액체로켓엔진 예비설계 프로그램 : 비정상작동.동특성 예측 기술 개요 및 현황)

  • Ko, Tae-Ho;Kim, Sang-Min;Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.417-418
    • /
    • 2009
  • Aiming at time-dependent performance prediction of Liquid Rocket Engine(LRE) system, Program for Dynamic Characteristic Prediction of LRE is overviewed, and a modeling and dynamic analysis of rocket engine system with reference to developed transient simulator for LRE is outlined.

  • PDF

Comparison of Resistance for Three 10,000 Ton Ships: a Monohull, a Catamaran and a Trimaran (10,000톤의 단동선, 쌍동선, 삼동선 저항 비교)

  • Choi, Yeong-Dal;Leem, Hyo-Kwan;Lee, Kwi-Joo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.71-76
    • /
    • 2006
  • Preliminary conceptual design of hulls is developed and a theoretical evaluation study performed for the comparison of the hull concepts. Systematic variation of the side hull location is carried out to find an optimum position of side hulls for a trimaran by CFD computation. In order to compare computed results, the model test of trimaran was carried out. Shallow water effect is considered due to the route which has critical water depth of 20m for the design speed and investigated on the condition of different speeds and water depth by the numerical computations.

  • PDF

Preliminary Throughflow Analysis of a Lift Fan in a Core Separated Turbofan Engine System

  • Shiratori, Toshimasa;Nakajima, Masahiro;Saito, Yoshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.491-498
    • /
    • 2004
  • Lift Fan Engines of JAXA's conceptual Jet VTOL aircraft have a very small bellmouse shape air intake, which make some differences in aerodynamic design of the blades. To obtain a better rotor or stator blade design, this paper performs a numerical analysis of the throughflow on a lift fan as a two-dimensional axisymmetrical flow. Based on the last report focusing on the air intake's influence on the throughflow, a more realistic bellmouse air intake case is treated to reconsider the influence on the throughflow by the small bellmouse air intake. Three work input patterns are tested to reduce some problematic influences on the throughflow or blade designs. The obtained result shows one of acceptable blade designs for the lift fan engine.

  • PDF

Conceptual Design Trade Offs between Solid and Liquid Propulsion for Optimal Stage Configuration of Satellite Launch Vehicle

  • Qasim, Zeeshan;Dong, Yunfeng
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.283-292
    • /
    • 2008
  • The foremost criterion in the design of a Satellite Launch Vehicle(SLV) is its performance capability to boost the designated payload to the desired mission orbit; it starts from focusing on the SLV configuration to achieve the velocity requirements($}\Delta}V$) for the mission. In this paper we review an analytical approach which is suitable enough for preliminary conceptual design and is used previously to optimize stage configurations for Two Stage to Orbit SLV for Low Earth Orbit(LEO) Missions; we have extended this approach to Three Stage to Orbit SLV and compared different propellant options for the mission. The objective is to minimize the Gross Lift off Weight(GLOW). The primary performance figures of merit were the total inert weight of the SLV and the payload weight that the SLV could lift into LEO, given candidate propulsion systems. The optimization is achieved by configuring the $}\Delta}V$ between stages. A comparison of configurations of single-stage and multi-stage SLVs is made for different propellants. Based upon the optimized stage configurations a comparative performance analysis is made between Liquid and Solid fueled SLV. A 3 degree of freedom trajectory-analysis program is modeled in SIMULINK and used to conduct the performance analysis. Furthermore, a cost analysis is performed on our stage optimized SLVs. The cost estimation relationships(CER) used give us a comparison of development and fabrication costs for the Liquid vs. Solid fueled SLV in man years. The pros and cons of the production, operation ability, performance, responsiveness, logistics, price, shelf life, storage etc of both Solid and Liquid fueled SLVs are discussed. The statistics and data are used from existing or historical(real) SLV stages.

  • PDF

Basic Study on Logical Model Design of Underground Facilities for Waterworks (상수도 지하시설물의 논리적 모델 설계에 관한 기초 연구)

  • Jeong, Da Woon;Yu, Seon Cheol;Min, Kyung Ju;Lee, Ji Yeon;Ahn, Jong Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.533-542
    • /
    • 2020
  • This study proposes the logical data model design of a spatial data model that complies with international standards for the waterworks of underground facilities. We conduct a preliminary study related to underground spatial data standards and data models, and review the status of the existing systems. Then, we defined the conceptual design direction of underground spatial data model based on the problems and issues. Next, we defined the terminology, classification, semantic relationships of waterworks. Next, for the conceptual design of the underground spatial data model, we defined the naming criteria for all data according to the waterworks classification. In addition, a logical model is drawn and described using UML (Unified Modeling Language) diagrams. Based on the results, it is expected that the accuracy related to underground facilities data will be improved.

A Study on Algorithm of Life Cycle Cost for Improving Reliability in Product Design (제품설계 신뢰성 제고를 위한 LCC의 알고리즘 연구)

  • Kim Dong-Kwan;Jung Soo-Il
    • Journal of the Korea Safety Management & Science
    • /
    • v.7 no.5
    • /
    • pp.155-174
    • /
    • 2005
  • Parametric life-cycle cost(LCC) models have been integrated with traditional design tools, and used in prior work to demonstrate the rapid solution of holistic, analytical tradeoffs between detailed design variations. During early designs stages there may be competing concepts with dramatic differences. Additionally, detailed information is scarce, and decisions must be models. for a diverse range of concepts, and the lack of detailed information make the integration make the integration of traditional LCC models impractical. This paper explores an approximate method for providing preliminary life-cycle cost. Learning algorithms trained using the known characteristics of existing products be approximated quickly during conceptual design without the overhead of defining new models. Artificial neural networks are trained to generalize on product attributes and life cycle cost date from pre-existing LCC studies. The Product attribute data to quickly obtain and LCC for a new and then an application is provided. In additions, the statistical method, called regression analysis, is suggested to predict the LCC. Tests have shown it is possible to predict the life cycle cost, and the comparison results between a learning LCC model and a regression analysis is also shown

Modular Program for Conceptual Design of Liquid Rocket Engine System, Part II : Integration of Modular Program (액체 로켓 엔진시스템 개념설계를 위한 모듈화 프로그램 Part II: 통합 모듈화 프로그램)

  • Park, Byung-Hoon;Yang, Hee-Sung;Kim, Won-Ho;Yoon, Woong-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.816-825
    • /
    • 2007
  • With a view to building up a program used in conceptual design of liquid rocket engine system, a preliminary performance-based code for an integrated engine system has been developed by incorporating sub-modular programs for each essential engine component. Modular descriptions for each component were formulated mathematically with essential parameters. In the whole iterative circuits for predicting engine performance, matching conditions of mass flow rate and pressure drop through each engine component have been considered. Mass balance calculations at each inter-component boundary are found smoothly converged. All the pressure drops through engine components as a function of mass flow rate are added up to provide turbo-pump outlet condition. In this paper, the flow chart for each iterative circuit and design methodologies are presented. Resultant predictions are validated with real engine data.

Preliminary Design of the Forced Gas Drying System for Spent Nuclear Fuel Dry Storage (사용후핵연료 건식저장을 위한 기체강제순환 건조장치 예비설계)

  • Chae, Gyung-sun;Shin, Kyung-wook;Park, Byeong-mok;Han, Jae-hyun;Lee, Geon-hui;Park, Jae-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.403-409
    • /
    • 2017
  • For dry storage of the spent nuclear fuel (SNF) stored in the storage pool of a nuclear power plant, essentially all moisture must be removed to prevent corrosion of the assembly and canister internals and/or degradation of fuel cladding integrity after SNF canister loading operation. R&D work is now in progress on a forced gas drying system that can be used to remove residual water in canisters. In this work, preliminary design is performed to manufacture the forced gas drying system. This process includes a case study of dry methods for canister moisture removal, relative codes and standards, confirmation of adequate dryness, needs analysis at plant sites, and characteristics of SNF stored in pools. Through this preliminary design work, we obtained a conceptual flow diagram and preliminary P&ID of the forced gas drying system. The results of this study can be used to determine details of the design to manufacture the forced gas drying system.

A Development of the Ship Weight Estimating Method by a Statistical Approach (통계적 접근법에 의한 선박 중량추정 방법 개발)

  • Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Accurate weight prediction methods are an essential of the ship design in both ship cost managements and performance satisfactions. When no parent or similar ships are available, an adequate method of the ship weight estimating is required. In this study, there was carried out to develop the ship weight estimating method for the preliminary design phase. The weight estimating methods were first surveyed by the references and summarized their characteristics. The weight estimation method by statistical approach was developed for the container ship because the containerized transportation markets is gradually growing and ship's size and loading capacity are rapidly enlarged. The correlation analysis and the multiple regression analysis were used for developing the weight estimating method. As a results of evaluating the developed method, the error ratio of the variation between estimated weight and ship's data was about 5%. And it was only 1% difference with the calculating weight of conceptual design results by shipyard design team that the estimating weight of ultra-large container ship was predicted by the developed method.

Straylight analysis for preliminary filter and baffle design for New Generation GOCI

  • Oh, Eun-Song;Ahn, Ki-Beom;Jung, Kil-Jae;Ryu, Dong-Ok;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.25.4-26
    • /
    • 2010
  • We present a three-mirror anastigmat(TMA) optical system for New Generation GOCI. In order to reduce the ghost optimized filter and baffle. By using carefully chosen antireflective coating and tilted filter angle, we fulfilled the design SNR requirement of 1500. We then designed a new entrance baffle and an internal baffle capable of producing the ghost ratio better than 0.01% of the nominal signal. The entrance baffle limits FOV to $0.75^{\circ}$ (E/W) $\times$ $0.60^{\circ}$ (S/N), and prevents the system from strong sun illumination, and the internal baffle prevents stray and scattered ray from entering into the telescope cavity. From these filter and baffle design, we confirmed that the instrument signal to noise ratio can be met with the current conceptual opto-mechanical design.

  • PDF