• 제목/요약/키워드: Preliminary Engineering Design

검색결과 876건 처리시간 0.028초

Feasibility study of an earth-retaining structure using in-situ soil with dual sheet piles

  • An, Joon-Sang;Yoon, Yeo-Won;Song, Ki-Il
    • Geomechanics and Engineering
    • /
    • 제16권3호
    • /
    • pp.321-329
    • /
    • 2018
  • Classic braced walls use struts and wales to minimize ground movements induced by deep excavation. However, the installation of struts and wales is a time-consuming process and confines the work space. To secure a work space around the retaining structure, an anchoring system works in conjunction with a braced wall. However, anchoring cannot perform well when the shear strength of soil is low. In such a case, innovative retaining systems are required in excavation. This study proposes an innovative earth-retaining wall that uses in situ soil confined in dual sheet piles as a structural component. A numerical study was conducted to evaluate the stability of the proposed structure in cohesionless dry soil and establish a design chart. The displacement and factor of safety of the structural member were monitored and evaluated. According to the results, an increase in the clearance distance increases the depth of safe excavation. For a conservative design to secure the stability of the earth-retaining structure in cohesionless dry soil, the clearance distance should exceed 2 m, and the embedded depth should exceed 40% of the wall height. The results suggest that the proposed method can be used for 14 m of excavation without any internal support structure. The design chart can be used for the preliminary design of an earth-retaining structure using in situ soil with dual steel sheet piles in cohesionless dry soil.

구조물 기초설계에의 전문가 시스템 적용 (Application of Expert System for the Design of Foundation)

  • 이창호;이병해;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1988년도 가을 학술발표회 논문집
    • /
    • pp.43-48
    • /
    • 1988
  • This paper provides readers with an attempt In applying expert systems to structural engineering. As a demonstrative domain to provide the pontentiality of expert system foundation design is presented. Foundation design can have less formalized phage in the overall design process, particularly during preliminary design. It depends on several factors: the function of the structure and the loads it must carry the subsurface conditions, and the cost of foundation, The expert system in the paper is to be used for determining the type of foundation.

  • PDF

Blast analysis of concrete arch structures for FRP retrofitting design

  • Nam, Jin-Won;Kim, Ho-Jin;Yi, Na-Hyun;Kim, In-Soon;Kim, Jang-Ho Jay;Choi, Hyung-Jin
    • Computers and Concrete
    • /
    • 제6권4호
    • /
    • pp.305-318
    • /
    • 2009
  • Fiber Reinforced Polymer (FRP) is widely used for retrofitting concrete structures for various purposes. Especially, for the retrofitting of concrete structures subjected to blast loads, FRP is proven to be a very effective retrofitting material. However, a systematic design procedure to implement FRP for concrete structure retrofitting against blast loads does not exist currently. In addition, in case of concrete structures with inarticulate geometrical boundary conditions such as arch structures, an effective analysis technique is needed to obtain reliable results based on minimal analytical assumptions. Therefore, in this study, a systematic and efficient blast analysis procedure for FRP retrofitting design of concrete arch structure is suggested. The procedure is composed of three sequential parts of preliminary analysis, breach and debris analysis, and retrofit-material analysis. Based on the suggested procedure, blast analyses are carried out by using explicit code, LS-DYNA. The study results are discussed in detail.

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • 제54권8호
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

Study on Aerodynamic Optimization Design Process of Multistage Axial Turbine

  • Zhao, Honglei;Tan, Chunqing;Wang, Songtao;Han, Wanjin;Feng, Guotai
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.130-135
    • /
    • 2008
  • An aerodynamic optimization design process of multistage axial turbine is presented in this article: first, applying quasi-three dimensional(Q3D) design methods to conduct preliminary design and then adopting modern optimization design methods to implement multistage local optimization. Quasi-three dimensional(Q3D) design methods, which mainly refer to S2 flow surface direct problem calculation, adopt the S2 flow surface direct problem calculation program of Harbin Institute of Technology. Multistage local optimization adopts the software of Numeca/Design3D, which jointly adopts genetic algorithm and artificial neural network. The major principle of the methodology is that the successive design evaluation is performed by using an artificial neural network instead of a flow solver and the genetic algorithms may be used in an efficient way. Flow computation applies three-dimensional viscosity Navier Stokes(N-S) equation solver. Such optimization process has three features: (i) local optimization based on aerodynamic performance of every cascade; (ii) several times of optimizations being performed to every cascade; and (iii) alternate use of coarse grid and fine grid. Such process was applied to optimize a three-stage axial turbine. During the optimization, blade shape and meridional channel were respectively optimized. Through optimization, the total efficiency increased 1.3% and total power increased 2.4% while total flow rate only slightly changed. Therefore, the total performance was improved and the design objective was achieved. The preliminary design makes use of quasi-three dimensional(Q3D) design methods to achieve most reasonable parameter distribution so as to preliminarily enhance total performance. Then total performance will be further improved by adopting multistage local optimization design. Thus the design objective will be successfully achieved without huge expenditure of manpower and calculation time. Therefore, such optimization design process may be efficiently applied to the aerodynamic design optimization of multistage axial turbine.

  • PDF

건축구조물의 예비설계용 전문가 시스템의 개발모델 (The Model for the Development of an Expert System for the Preliminary Design of Building Structures)

  • 최창근;김이두
    • 전산구조공학
    • /
    • 제3권2호
    • /
    • pp.97-108
    • /
    • 1990
  • 본 연구에서는 건물의 완성에 커다란 영향을 주게되는 건물의 예비설계분야에 전문가 시스템의 기법을 이용한 설계지원시스템을 개발하기 위한 모델을 구축하였다. 이러한 시스템은 기존의 수치해석용 프로그램으로 수행되던 구조부재의 물량에 의한 경제성이외에도 건물의 안정성, 시공성, 그리고 건축공간성등의 경험적 영역까지를 고려한 많은 대안을 사전에 검토해봄으로서 더욱 효율적인 설계를 가능하게 하고, 또한 구조설계의 오류를 초기에 방지할 수 있게 한다.

  • PDF

Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.949-962
    • /
    • 2016
  • The braking hose in the automotive hydraulic braking system exhibits the complicated anisotropic large deformation while its movable end is moving along the cyclic path according to the steering and bump/rebound motions of vehicle. The complicated large deformation may cause not only the interference with other adjacent automotive parts but also the durability problem resulting in the fatal microcraking. In this regard, the design of high-durable braking hose with the interference-free layout becomes a hot issue in the automotive industry. However, since it has been traditionally relied on the cost-/time-consuming trial and error experiments, the cost- and time-effective optimum design method that can replace the experiment is highly desirable. Meanwhile, the hose deformed configuration and fatigue life are different for different hose cyclic paths, so that their characteristic investigation becomes an important preliminary research subject. As a preliminary step for developing the optimum design methodology, we in this study investigate the hose deformed configuration and the fatigue life for four representative hose cyclic paths.

레일과 교량의 상호작용 매개변수 분석 연구 (Parametric Study on Rail and Bridge Interaction)

  • 김종민;한상윤;임남형;김정훈;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.445-450
    • /
    • 2007
  • CWR(Continuous Welded Rail) and bridge interaction produce rail force, bridge displacement and rail/bridge relative displacement. Each of these has limitation by many codes. In this paper, analysis of interaction has been carried out by using foreign codes(UIC 774-3 R code of Europe etc.) because there is no code about interaction between rail and bridge in Korea. Recently, railway bridges with CWR has been constructed for structural and economical reasons. When designer plans railway bridges, design a bridge model first and then investigate railway forces and displacement by interaction analysis. If these results go out bounds from limitation, designer plans railway bridges again and again. In this paper, using the parametric study on CWR and railway bridge interaction, railway bridge parameters such as length of bridge span, area of bridge, moment of inertia, stiffness of pier, etc. are presented. It helps preliminary design of railway bridges.

  • PDF

일반도로교의 내진해석모델 개발 (Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges)

  • 국승규;김판배
    • 한국지진공학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-6
    • /
    • 2002
  • 일반설계에서 요구하는 구조물의 안전성은 탄성영역에서 일정수준의 안전계수를 확보하여 만족된다. 그러나 내진설계에서의 안전성은 소성영역에서 구조물의 형상에 따라 특정한 연성파괴메카니즘을 유도하여 확보하도록 요구하고 있다. 그러므로 이러한 안전성은 구조물의 기본설계단계에서 여러 개의 대안을 가지고 비교, 검토를 수행하여 확보되어야 하며 실시설계단계에서 이를 확인하는 작업이 이루어져야 한다. 이 연구에서는 일반도로교량을 대상으로 하여 기본설계와 실시설계에 사용하는 모델을 설정하였으며 양 모델의 동적거동특성인 주기와 모드형상을 비교하고 다중모드스펙트럼해석을 적용하여 파괴메카니즘을 규명하였다. 기본설계와 실시설계에 사용하는 모델로 각각 확인한 파괴메카니즘을 비교하여 기본설계모델의 타당성을 입증하고 실무에 적용할 수 있는 내진해석모델로 제시하였다.

선박 초기설계에 FBS 설계 모델의 응용에 관한 연구 (A Study on the Application of FBS Design Model to Preliminary Ship Design)

  • 박창규;양영순;표상우
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.192-201
    • /
    • 2008
  • The design process becomes more difficult due to the increasing complexity of products. Thus, without any proper design experience, designer cannot handle his design problems systematically. Besides, the conventional optimal design method cannot be used effectively at the early design stage, since most design problems must be formulated in terms of objective and constraint functions based on the mathematical concepts of Operation Research. Thus, in this paper, new design concept based on FBS (Function-Behavior-Structure) design model is introduced to help the novice designer formulate the complex design problems systematically into a mathematical form. In this FBS model, function means the designer's new intents designer wants to create for, structure stand for a final product configuration and behaviour is a product's performance. FBS design model is thus rather totally different concept used for formulating design problem, compared with conventional optimal design method. To validate this new FBS model, 330K VLCC design case is performed, and we found, though it is one design example case, that this new design concept could be effectively used for future ship design problems since, during the formulating design problem, the only engineering terminology such as function, structure, and behaviour of design product is used based on the engineering concepts, instead of mathematical terminology such as objective and constraints.