• Title/Summary/Keyword: Preheated combustion air

Search Result 34, Processing Time 0.037 seconds

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료 분무특성에 관한 실험적 연구)

  • Park, Min-Chul;Oh, Sang-Hun
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.42-50
    • /
    • 2001
  • An experimental study has been carried on high-preheated temperature air combustion. Because the flames with high-preheated temperature air combustion were much more stable and homogeneous(both temporally and spatially) as compared to the room-temperature combustion air. The global flame feature showed range of flame colors (yellow, blue, blurish-green) over the range of conditions. Low level of NOx along with low level of CO have been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on preheated temperature and oxygen concentration air.

  • PDF

Experimental Study on Light Oil Combustion Characteristics With High-Preheated Air (고온의 예열공기를 이용한 액체연료의 분무 연소특성에 관한 실험적 연구)

  • Park, Min-Chul;Kim, Dong-Il;Oh, Sang-Hun
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • An experimental study has been carried on high-preheated temperature air combustion. The flames with high-preheated temperature air combustion turned out to be both temporally and spatially much more stable and homogeneous than these with room-temperature combustion air. The global flame feature showed a range of flame colors (yellow, blue, blurish-green) according to the flame conditions. A low level of NOx along with low level of CO has been obtained under high-preheated air combustion conditions. The thermal and chemical behavior of high-preheated air combustion flames depends on the preheated temperature and the oxygen concentration of air.

  • PDF

Combustion characteristics of coaxial diffusion flame with preheated air temperature and dilution level (예열공기온도와 희석비율에 따른 동축 확산 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.51-56
    • /
    • 2001
  • An experiment using preheated air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. Preheated air combustion generally produces high NOx emissions but it was known very well to reduce NOx emission by diluting the combustion air with inert gas in preheated air combustion. In our study, $N_2$ gas was used for diluent and propane was utilized for fuel. We set the combustion air temperature on 300K, 500K, 700K, 900K and dilution level from 21% to 10% in terms of oxygen concentration. NOx emission increased along increment of combustion air temperature and decreased along increment of dilution level(lowering of oxygen concentration in combustion air). Flame-off limit with dilution level enhanced, flame length became longer and the location of maximum flame temperature became lower with increasing of combustion air temperature.

  • PDF

Solid Fuel in the Highly Preheated Air Combustion (고체 연료의 고온 공기 연소 특성에 관한 연구)

  • Jin, Hong-Jong;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.185-192
    • /
    • 2002
  • A laboratory scale thermogravimetric analyser was developed to investigate the combustion characteristics of selected solid fuel(wood) in the highly preheated air. The aims are to introduce in the means of experimental determination of the solid fuel particle characteristics through the combustion process in the environment of highly preheated air. A nearly single particle combustion condition was reproduced in a thermogravimetric analyser and regenerating combustor. For a fuel particle whose characteristic length was a few centimeter, the sub-processes of fuel drying, pyrolysis as well as the combustion of residual carbon were identified. Fluidized environment of carrier gas was selected as the major parameter which affect the combustion process.

  • PDF

The Relationship Between Firing Modes and Nitric Oxide Emission In Highly Preheated Air Combustion

  • Choi, Gyung-Min;Katsuki, Masahi;Kim, Duck-Jool
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.433-440
    • /
    • 2000
  • The influence of combustion air at temperatures on nitric oxide emission was studied. The nitric oxide emission generally increases with a rise in the temperature of the combustion air. However, if combustion products for dilution of fuel or combustion air are used before the combustion reaction, then the nitric oxide emission can be reduced even when highly preheated air for combustion air is used. Combustion in low oxygen concentrations flattens the firing mode, resulting in a uniform reaction, and, thus, low nitric oxide emission can be achieved.

  • PDF

A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor (하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구)

  • Choi, Inchan;Jo, Junik;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

Combustion Characteristics of a Turbulent Non-premixed Flame Using High Preheated Air (고온 예열 공기에 의한 난류 비예혼합 화염의 연소 특성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.561-568
    • /
    • 2003
  • An experiment using high preheated air in a turbulent non-premixed flame was performed to investigate the effects of high preheated air on the combustion characteristics. Combustion using high preheated and diluted air with flue gas is a new technology which enables NO emission to be reduced. In this study, Na was used as diluent and propane as fuel. Combustion characteristics, especially the distributions of the flame temperature, NO concentration and OH radical intensity were examined under the condition of 300 K, 600 K, 1000 K in terms of the combustion air temperature, and also under the condition of the dilution level from 21% to 13% in terms of oxygen concentration. As the preheated air temperature increased, it appeared that the flame length became shorter, maximum flame temperature increased, the reaction region moved to upstream, and NO concentration increased, but the flame temperature's fluctuation was reduced. In opposite, it was shown with decrement of oxygen concentration at the maximum temperature that both maximum value and the gradient of the flame temperature decreased, and NO emission also decreased considerably, but its fluctuation became larger, being inclined to be unstable.

Combustion characteristics of coaxial diffusion flame with high preheated and swirled air (고온 공기와 선회수에 의한 동축 분류 화염의 연소 특성)

  • Kim, Jin-Sik;Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.112-117
    • /
    • 2001
  • An experiment using high preheated and swirled air in the coaxial diffusion flame burner was carried out in order to decrease NOx emission and improve the thermal efficiency. $N_2$ gas was used for diluent and propane was utilized for fuel. Combustion using high preheated air has two remarkable characteristics ; (1) low NOx emission with increasing dilution level, (2) high thermal efficiency in the furnace. Also, swirled air can mix fuel and oxidizer well in condition of diffusion flme and maintain the stable combustion. The color of flame changes from yellow to blue green according to increasing the dilution level of mixture gas. NO emission decreased with increasing dilution level and the swirl number.

  • PDF

The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner (자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Kim, Jong-Gyu;Dong, Sang-Keun;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner (축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Yoon, Young-Bin;Dong, Sang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF