• 제목/요약/키워드: Preheated air

검색결과 51건 처리시간 0.026초

공업로용 무화염식 축열버너의 국산화 개발 (The Development of Flameless Regenerative Burner for the Industrial Furnaces)

  • 김원배;양제복
    • 한국연소학회지
    • /
    • 제15권2호
    • /
    • pp.27-33
    • /
    • 2010
  • Recently, much attention has been paid to utilizing highly preheated air up to $1,000^{\circ}C$ through waste gas in industrial furnaces. The regenerative burner technology has shown to provide significant reduction in energy consumption (up to 60%), downsizing of the equipment (about 30%) and lower emissions (about 30%) while maintaining high thermal performance of the system since 2000. The object of this study is to develop the flameless regenerative burner for industrial furnaces based on the FLOX(Flameless Oxidation) principle and it has been designed and manufactured as pilot scale. Performance tests are experimentally done and their results are discussed. They showed 1) a very good uniformity in temperature distribution, 2) about 100 ppm in NOx at the temperature $1,300^{\circ}C$, 3) about 95% in temperature efficiency. Besides, the regenerative burner has advantage in easy maintenance and high usage rate of regenerator due to the separate and portable type of heat exchanger.

Kinetics of the water absorption in GGBS-concretes: A capillary-diffusive model

  • Villar-Cocina, E.;Valencia-Morales, E.;Vega-Leyva, J.;Antiquera Munoz, J.
    • Computers and Concrete
    • /
    • 제2권1호
    • /
    • pp.19-30
    • /
    • 2005
  • We study the kinetics of absorption of water in Portland cement concretes added with 60, 70 and 80% of granulated blast furnace slag (GGBS) cured in water and at open air and preheated at 50 and $100^{\circ}C$. A mathematical model is presented that allows describing the process not only in early ages where the capillary sorption is predominant but also for later and long times where the diffusive processes through the finer and gel pores are considered. The fitting of the model by computerized methods enables us to determine the parameters that characterize the process: i.e., the sorptivity coefficient (S) and diffusion coefficient (D). This allows the description of the process for all times and offers the possibility to know the contributions of both, the diffusive and capillary processes. The results show the influence of the curing regime and the preheating temperature on the behavior of GGBS mortars.

통계적 패턴인식에 의한 유도가열 솥의 비파괴 불량 검사 방법 (A defect inspection method of the IH-JAR by statistical pattern recognition)

  • 오기태;이순걸
    • 제어로봇시스템학회논문지
    • /
    • 제6권1호
    • /
    • pp.112-119
    • /
    • 2000
  • A die-casting junction method is usually used to manufacture the tub of an IH(induction heating) jar. If there is a very small air bubble in the junction area, the thermal conductivity is deteriorated and local overheat occurs. Such problem brings serious inferiority of the IH jar. In this paper, we propose a new method to detect such defect with simply measured thermal data. Thermal distribution of preheated tubs is obtained by scanning with infrared thermal sensors and analyzed with the statistic pattern recognition method. By defining the characteristic feature as the temperature difference between sensors and using ellipsoid function as decision boundary, a supervised learning method of genetic algorithm is proposed to obtain the required parpameters. After applying the proposed method to experiment, we have proved that the rate of recognition is high even for a small number of data set.

  • PDF

구형축열체를 이용한 축열기의 설계인자도출 (Derivation of Design Parameter for Heat Regenerator with Spherical Particles)

  • 조한창;조길원;이용국
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1412-1419
    • /
    • 2003
  • Heat regenerator occupied by regenerative materials improves thermal efficiency of combustion system through the recovery of sensible heat of exhaust gases. By using one-dimensional two-phase fluid dynamics model, the unsteady thermal flow of regenerator with spherical particles, was numerically analyzed to evaluate the heat transfer and pressure losses and to derive the design parameter for heat regenerator. It is confirmed that the computational results, such as air preheat temperature, exhausted gases outlet temperature, and pressure losses, agreed well with the experimental data. The thermal flow in heat regenerator varies with porosity, configuration of regenerator and diameter of regenerative particle. As the gas velocity increases with decreasing the cross-sectional area of the regenerator, the heat transfer between gas and particle enhances and pressure losses decrease. As particle diameter decreases, the air is preheated higher and the exhaust gases are cooled lower with the increase of pressure losses. Assuming a given exhaust gases temperature at the regenerator outlet, the regenerator need to be linearly lengthened with inlet Reynolds number of exhaust gases, which is defined as a regenerator design parameter.

오목표면에 분사되는 경사충돌제트의 난류열전달 현상에 관한 연구 (Turbulent Heat Transfer of an Oblique Impinging Jet on a Concave Surface)

  • 임경빈;최형철;이세균;최상경;김학주
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.371-380
    • /
    • 2000
  • The turbulent heat transfer from a round oblique impinging jet on a concave surface were experimentally investigated. The transient measurement method using liquid crystal was used in this study. In this measurement, a preheated wall was suddenly exposed to an impinging jet while recording the response of liquid crystals to measure surface temperature. The Reynolds numbers were 11000, 23000 and 50000, nozzle-to-surface distance ratio was from 2 to 10 and the surface angles were a =$0^{\circ}\;15^{\circ},\;30^{\circ}and\;40^{\circ}$. Correlations of the stagnation point Nusselt numbers with Reynolds number, jet-to-surface distance ratio and dimensionless surface angle, which account for the surface inclined angle, are presented. The maximum Nusselt numbers, in this experiment, occurred in the direction of upstream. The displacement of the maximum Nusselt number from the stagnation point increases with increasing surface angle or decreasing nozzle-to-surface distance. In this experiment, the maximum displacement is about 0.7 times of the jet nozzle diameter when surface curvature, D/d is 10.

  • PDF

보일러의 효율향상(效率向上)을 위한 연소보조장치(燃燒補助裝置)에 관(關)한 연구(硏究) (연소실(練燒室) 모형(模型) 실험(實驗)) (A Study on the Apparatus for Improving Boiler Efficiency)

  • 서정일;조진호;이창식;조종미
    • 태양에너지
    • /
    • 제2권2호
    • /
    • pp.11-20
    • /
    • 1982
  • This paper presents the experimental investigations of a system as a second treatment means to increase boiler efficiency and heat transfer from combustion gas to heating surfaces in the case of spray combustion. In order to reburn residual combustible components accelerate the burning rate of sprayed fuel droplets, improve the diffusion flame and delay the residence time of the flame, advice with slit type nozzles for spouting preheated supplementary air is used in this study. In the experiment, boiler efficiency and smoke concentration in the exhaust gas at given conditions are measured in both case of installing and not-installing device in the model of combustion chamber which was designed to be equipped with five surfaces. The results obtained in this experiment are as follows ; 1. The optimum values of air rate ${\lambda}$ are about 1.3 in both case. 2. The exhaust gas temperature in the case with device increases about $30{\sim}70^{\circ}C$ above that of the case without the device. 3. Boiler efficiency and reduction effect of smoke emissions are improved considerably.

  • PDF

오목표면에 분사되는 난류원형충돌제트에 대한 국소열전달계수 측정에 관한 연구 (Measurement of the Local Heat Transfer Coefficient on a Concave Surface with a Turbulent round Impinging Jet)

  • 임경빈
    • 설비공학논문집
    • /
    • 제7권1호
    • /
    • pp.112-119
    • /
    • 1995
  • Measurements of the local heat transfer coeffcients on a spherically concave surface with a round impinging jet are presented. The liquid crystal transient method was used for these measurements. This method, which is a variation on the transient method, suddenly exposes a preheated wall to an impinging jet while video recording the response of liquid crystals for the measurement of the surface temperature. The Reynolds numbers used were 1,000, 23,000 and 50,000 and the nozzle-to-jet distance was L/d=2, 4, 6, 8, 10. Presented results are compared to previous measurements for flat plate. In the experiment, the local heat transfer Nusselt numbers on a concave surface are higher than those on a flat plate. Maximum Nusselt number at all region occured at L/d=6 and second maximum in the Nusselt number occured at R/d=2 for both Re=50,000 and Re=23,000 in case of L/d=2 and for only Re=50,000 in case of L/d=4. All other cases exhibit monotonically decreasing value of the Nusselt number along the curved surface.

  • PDF

수평 T형 증발관내 2상류의 유량분배 및 압력강하 특성 (Characteristics of T-phase flow distribution and pressure drop in a horizontal T-type evaporator tube)

  • 박종훈;조금남;조홍기
    • 설비공학논문집
    • /
    • 제11권5호
    • /
    • pp.658-668
    • /
    • 1999
  • The objective of the present study is to investigate the effect of experimental parameters on the hydrodynamic characteristics in a horizontal tee-type evaporator using R-22. The experimental apparatus consisted of an unheated tee-type test section, a liquid-vapor separator, a preheated, mass flow meters, a plate heat exchanger, pump, and other measurement devices. The experimental parameters were mass flux(500 and 600kg/$m^2$s), inlet quality(0.1~0.3) and separation ratio(0.3~0.7). Absolute pressure at the inlet of the test section was 0.652 MPa. The branch-to-inlet inner diameter ratio was 0.61. Pressure gradient at the branch section was larger than that at the run section at the same separation ratio. Pressure drop per unit length increased at the run section and decreased at the branch section as the separation ratio increased. Pressure drop predicted by the separated flow model agreed with experimental data within -35 to +16%. Generally, predicted values showed similar trend with the data. Mass flow ratio of vapor refrigerant was affected by the inlet quality more than the mass flux.

  • PDF

전산유체역학을 이용한 단일 송풍기가 적용된 공냉식 연소설비의 효율개선 (Enhancement of combustion efficiency of a air-cooled combustor system with single F.D. Fan Using CFD)

  • 김민철;손병현;이재정;박흥석
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.460-468
    • /
    • 2021
  • 본 연구는 multi fan 방식의 "공랭식 연소설비"의 공정관리상의 문제점을 single F.D. fan 으로 대체하여 개선시키기 위해 CFD 진행하였고, 연소로 내 유동조건 변화를 분석하여 문제점을 확인하였다. 이를 개선하기 위해 연소공기 주입구조를 변경하였고, 구조 변화에 따른 연소효율 개선을 수치해석으로 평가하였다. 또한 실제 연소설비에 수치해석결과를 반영하여 구조개선을 한 후 개선 전·후의 연소효율을 실험적으로 측정하였다. 먼저 기존 Single F.D fan 이 적용된 연소설비에 대한 수치해석을 통해, 2개의 유로로 공급되는 연소공기가 각 유로의 마찰력 차이와 압력의 변화로 인해 연소로 내에서 공급비율이 불규칙하게 되어 선회방식의 연소조건을 위한 축 형태의 난류형성이 어려움을 확인하였다. 이를 개선하기 위해서 연소로에 주입하는 공기 공급 방식을 두 가지로 나누어 수치해석을 하였다. 첫 번째 방식은 연소공기를 외벽에서 180 ~ 360° 회전 후 예열된 연소공기가 주입되는 구조에 대하여 검토하였고, 두 번째는 연소로 내에는 선회할 수 있는 베인(vane) 구조를 적용하여 연소로 밖에서 1차 열교환 후 연소로 내부에 접선방향으로 연소공기가 주입되는 구조에 대하여 검토하였다. 그 결과, single F.D. fan을 가진 공랭식 연소로에 선회방식으로 공기를 주입할 경우, 연소로 외벽의 냉각과 연소로 내부의 완전혼합 유지를 위해 이중 냉각벽을 가지는 덕트 구조를 적용하는 것이 연소조건을 최적화하는데 바람직한 것으로 나타났으며, 실제 운영중인 설비에 적용하여 개선 전·후의 연소효율을 비교한 결과 연소효율이 개선되는 것을 확인할 수 있었다.

Se 증발온도가 비진공 공정으로 제조한 CIS 광흡수층에 미치는 영향 (The effects of Se evaporation temperature on CIS absorber layer fabricated by non-vacuum process)

  • 박명국;안세진;윤재호;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.441-443
    • /
    • 2008
  • A non-vacuum process for fabrication of $CuInSe_2$ (CIS) absorber layer from the corresponding Cu, In solution precursors was described. Cu, In solution precursors was prepared by a room temperature colloidal route by reacting the starting materials $Cu(NO_3)_2$, $InCl_3$ and methanol. The Cu, In solution precursors were mixed with ethylcellulose as organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of Cu, In solution with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents and to burn the organic binder material. Subsequently, the resultant CI/Mo/glass sample was selenized in Se evaporation in order to get a solar cell applicable dense CIS absorber layer. The CIS absorber layer selenized at $530^{\circ}C$ substrate temperature for 30 min with various Se gas evaporation temperature was characterized by XRD, SEM, EDS.

  • PDF