• 제목/요약/키워드: Preheated air

검색결과 51건 처리시간 0.045초

자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향 (The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner)

  • 강민욱;김종규;동상근;윤영빈
    • 한국연소학회지
    • /
    • 제8권1호
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

축열식 저 NOx 연소기의 배가스 재순환이 연소특성에 미치는 영향 (The effect of flue-gas recirculation on combustion characteristics of regenerative low NOx burner)

  • 강민욱;윤영빈;동상근
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.97-104
    • /
    • 2002
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced

  • PDF

층류확산화염에서 질소 첨가와 예열온도가 매연 생성에 미치는 영향 (The Effects of N2 Diluent and Preheated Air on Soot Emission in Laminar Diffusion Flames)

  • 정용기;이종호;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.1-8
    • /
    • 2004
  • An study has been performed with axisymmetric coflow diffusion flames to investigate the influence of air-side fuel side dilution and initial preheated temperature on the soot formation in methan/air flames. Soot quantities are determined by using PLII(Planar Laser Induced Incandescence), such a $C_2$H$_2$ major species(CH$_4$, $O_2$, $N_2$) and temperature are simulated by chemkin code. The numerical analysis was performed with transport properties and detailed reaction mechanisms m axisymmetric coflow diffusion flames. The study of how flame temperature and $N_2$ dilution of air and fuel side influence the soot concentrations is focused. Soot concentrations results on PLII show that preheated temperature contributes to an increase in the soot volume fraction, and soot formation Is more productive to air side dilution than to fuel side dilution. $C_2$H$_2$ concentrations have a similar tendency to soot concentrations.

고온, 희박공기 연소에 관한 실험적 연구 (An Experimental Study on High Temperature and Low Oxygen Air Combustion)

  • 정대헌;양제복;노동순;김원배
    • 한국연소학회지
    • /
    • 제3권1호
    • /
    • pp.49-57
    • /
    • 1998
  • High temperature preheated and diluted air combustion has been developed as the technology to realize higher thermal efficiency. In this type of combustion, there are many interesting phenomena which cannot be observed in room temperature air combustion. The characteristics of the combustion, investigated using a 3500 kcal/h LPG fired test facility, are described. The flame is demonstrated to have a blue and green in color and has a large volume. As the preheated air temperature increased up to $1000\;^{\circ}C$, the NOx emission incrased exponentially over a few hundred ppm with 11% $O_2$ correction. But, it drastically reducedabout 20ppm when the air was diluted from 21% $O_2$ to 5% $O_2$.

  • PDF

절환주기 변화에 다른 축열 연소기의 연소특성 (Combustion Characteristics of A Regenerative Combustor with the Change of Alternating Period)

  • 양병옥;임인권
    • 한국연소학회지
    • /
    • 제4권1호
    • /
    • pp.95-103
    • /
    • 1999
  • Experimental study on combustion characteristics of a regenerative combustor has performed. High-temperature air combustion in the regenerative combustor is obtained through heat recovery from exhaust gas flow by porous ceramic materials and through alternation of air flow direction through the combustor. Temperature field, CO and NOx emission with respect to the frequency of alternation are measured. It is found that at initial stage of the alternation, temperature of inlet section of main combustion chamber is increased sharply since both high temperature air preheated by the ceramics and prompt fuel injection results in rapid combustion. Following this initial stage, combustion temperature is reduced as the preheated air temperature is reduced. However peak temperature in the chamber and exhaust gas temperature are decreased as the alternation period is reduced, increased temperature of ceramic is observed. CO and NOx emission with respect to the alternation period is also examined. It is found that there exists a range of optimum alternating period for CO and NOx emission characteristics.

  • PDF

층류 예혼합 화염의 예열공기 연소특성 (Characteristics of Preheated Air Combustion in a Laminar Premixed Flame)

  • 이종호;이승영;한재원;장영준;전충환
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.1039-1046
    • /
    • 2002
  • Co-flow axisymmetric laminar premixed flame of methane was used to study the influence of air temperature and $N_2$ addition on the flame structure, temperature field and emission characteristics. OH 2-D images and temperatures along the centerline were measured experimentally by PLIF and CARS techniques respectively to observe the influences of dilution and thermal effects of $N_2$ in the gas mixture. Also, the concentration of NOx was measured at each condition by gas analyser to see the suppression effect of N2 addition on NOx emissions. It was found that OH concentrations distribute widely as air temperature goes higher, while the effect of $N_2$ addition is not significant. But $N_2$ addition highly contributes to the flame front and NOx emissions which was argued to be due to the reduction of flame temperature. In accordance with experimental study, numerical simulation using CHEMKlN code was carried out to compare the temperature results with those acquired by CARS measurement, and we could find that there is good agreement between those results.

고온공기이용 오일 연소기술 (An Experimental Study on Oil Combustion Technology with High Temperature Preheated Air)

  • 김원배;양제복
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.17-23
    • /
    • 2002
  • The objective of this study is to develop a new oil combustion technology concerning industrial furnaces and kilns, not only to save energy but also to reduce environmental emissions. Of many kinds of such technologies we chose the high temperature air combustion technology which was initiated by the British steel company in '80s and developed further by the American burner company "North American". In this study it was carried out to test regenerative burner experimentally and to have an applicability to industry. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.

  • PDF

오일이용 고온공기 연소시 NOx 저감기술 (An Experimental Study on NOx Emission under the High Temperature Air Combustion with Oil)

  • 양제복;김원배
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제25회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.81-88
    • /
    • 2002
  • It's well known that with the increase of preheated air temperature NOx is increasing ,while the energy consumption is decreasing. In this study the experimental study was carried out to find out a new method breaking the above-mentioned old concept. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.

  • PDF

MATRIX형 세라믹 열교환기 코아의 열전단 및 열응력해석 (The Heat Transfer and Thermal Stress Analysis on the Ceramic Core of the Matrix-type Recuperator)

  • 박용환;우창수
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.151-159
    • /
    • 1994
  • The heat transfer and thermal stress analysis was performed on the ceramic core of the matrix-type recuperator. The efficiency was calculated as 34% to 65%. Triple-pass arrangement provided higher preheated air temperatures, lower thermal stresses and the increase of pressure drops. Higher temperature gradients and maximum peak stresses appeared on the corners of the ceramic core. The effect of boundary conditions was significant and the use of spring-load sealing mechanism could release thermal stresses.

  • PDF

공기의 온도와 수증기가 목재 톱밥의 가스화에 미치는 영향 (The effect of oxidizer temperature and steam addition on gasification in wood sawdust)

  • 안성율;최경민;김덕줄
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.63-68
    • /
    • 2007
  • An experimental study was carried out to investigate gasification process of wood sawdust in the 1-dimensional downdraft fixed bed gasifier. The preheated air which was used oxidizer and steam were used as a gasifying agent. The downdraft fixed bed gasifier obtains more amount of hydrogen and methane by increasing residence time of supplied air. The operating parameters, the supplied air temperature and steam were used. The oxidizer temperature was varied from 500K to 620K and vapor was added. The gasification process was monitored by measuring temperature at three position near the biomass using R-type thermocouples and the syngas composition was analyzed by gas chromatograph. We get the sample gas at the end of gasifier and it was eonugh time to finishing the chemical reaction. Finally, the amount of hydrogen and methane were increased widely as increasing the oxidizer temperature and adding steam.

  • PDF