• Title/Summary/Keyword: Preferred direction of gas

Search Result 11, Processing Time 0.023 seconds

Control of Gas Direction in Gas Assisted Injection Molding (가스사출시 가스흐름방향의 예측 및 제어)

  • Soh, Young-Soo
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.153-158
    • /
    • 1999
  • An improved method to predict preferred direction of gas in gas assisted injection molding processes is introduced. Resistance of resin flow is defined and this resistance of resin flow is not directly related to the resistance of gas flow. Pressure drop requirement was believed to be proportional to the resistance to gas flow in our previous work. Instead of using the pressure drop requirement, velocity of resin should be compared to predict the gas flow direction. This method predicts the gas flow direction from the knowledge of process variables such as resin flow length, cross section area of cavity, melt temperature, and short shot. A simulation package was used to confirm the method.

  • PDF

PREFERRED ORIENTATION OF TIN FILM STUDIED BT A REAL TIME SYNCHROTRON X-RAY SCATTERING

  • Je, J.H.;Noh, D.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.399-406
    • /
    • 1996
  • The orientational cross-over phenomena in an RF sputtering growth of TiN films were studied in an in-situ, real-time synchrotron x-ray scattering experiment. For the films grown with pure Ar sputtering gas, the cross-over from the more strained (002)-oriented grains to the less strained (111)-oriented grains occurred as the film thickness was increased. As the sputtering power was increased, the cross-over thickness, at which the growth orientation changes from the <002> to the <111> direction, was decreased. The addition of $N_2$ besides Ar as sputtering gas suppressed the cross-over, and consequently resulted in the (002) preferred orientation without exhibiting the cross-over. We attribute the observed cross-over phenomena to the competition between the surface and the strain energy. The x-ray powder diffraction, the x-ray reflectivity, and the ex-situ AFM surface topology study consistently suggest that the microscopic growth front was in fact always the (002) planes. In the initial stage of growth, the (002) planes were aligned to the substrate surface to minimize the surface energy. At later stages, however, the (002) growth front tilted away from the surface by about $60^{\circ}$ to relax the strain, which caused the cross-over of the preferred growth direction to the <111> direction.

  • PDF

A Study on the Surface Modification of Graphite by CVD SiC -Growth Characteristics of SiC in a Horizontal CVD Reactor- (화학증착 탄화규소에 의한 흑연의 표면개질 연구 -수평형 화학증착반응관에서 탄화규소 성장특성-)

  • 김동주;최두진;김영욱;박상환
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.4
    • /
    • pp.419-428
    • /
    • 1995
  • Polycrystalline silicon carbide (SiC) thick films were depostied by low pressure chemical vapor deposition (LPCVD) using CH3SiCl3 (MTS) and H2 gaseous mixture onto isotropic graphite substrate. Effects of deposition variables on the SiC film were investigated. Deposition rate had been found to be surface-reaction controlled below reactor temperature of 120$0^{\circ}C$ and mass-transport controlled over 125$0^{\circ}C$. Apparent activation energy value decreased below 120$0^{\circ}C$ and deposition rate decreased above 125$0^{\circ}C$ by depletion effect of the reactant gas in the direction of flow in a horizontal hot wall reactor. Microstructure of the as-deposited SiC films was strongly influenced by deposition temperature and position. Microstructural change occurred greater in the mass transport controlled region than surface reaction controlled region. The as-deposited SiC layers in this experiment showed stoichiometric composition and there were no polytype except for $\beta$-SiC. The preferred orientation plane of the polycrystalline SiC layers was (220) plane at a high reactant gas concentration in the mass transfer controlled region. As depletion effect of reactant concentration was increased, SiC films preferentially grow as (111) plane.

  • PDF

Application of Inverse Pole Figure to Rietveld Refinement: III. Rietveld Refinement of $SnO_2$ Thin Film using X-ray Diffraction Data

  • Kim, Yong-Il;Jung, Maeng-Joon;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.354-358
    • /
    • 2000
  • The SnO$_2$film was deposited on a corning glass 1737 substrate by plasma enhanced chemical vapor deposition using a gas mixture of SnCl$_4$, $O_2$, and Ar. The film thickness was measured using $\alpha$-step and was about 9400$\AA$. The conventional X-ray diffractometry and pole figure attachment were used to refine the crystal structure of SnO$_2$ thin film. Six pole figures, (200), (211), (310), (301), (321), and (411), were measured with CoK$_\alpha$ radiation in reflection geometry. The X-ray diffraction data were measured at room temperature using CuK$_\alpha$ radiation with graphite monochromator. The agreement between calculated and observed patterns for the normal direction of SnO$_2$ thin film was not satisfactory due to the severely preferred orientation effect. The Rietveld refinement of heavily textured SnO$_2$ thin film was successfully achieved by adopting the pole density distribution of each reflection obtained from the inverse pole figure as a correction factor for the preferred orientation effect. The R-weighted pattern, R$_wp$, was 15.30%.

  • PDF

The CO sensing properties of thick film gas sensor using Co3O4 powders prepared by hydrothermal reaction method (수열합성법으로 제조된 Co3O4 분말을 사용한후막 가스센서의 CO 감지 특성)

  • Kim, Kwang-Hee;Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.385-390
    • /
    • 2010
  • CO sensing thick film gas sensors using $Co_3O_4$ powders prepared by hydrothermal reaction method, were fabricated, and their structural, electrical and CO gas sensing properties were investigated. The specific surface area of the $Co_3O_4$ powders obtained from BET analysis was about 79.0 $m^2/g$. XRD and SEM results show that the thick films heat-treated at $500^{\circ}C$ for 30 min after screen printing had the preferred orientation of (311) direction and the crystalline size was calculated to 221 $\AA$. The maximum activation energy obtained from the temperature-resistance characteristics was 3.11 eV in the temperature range of $290^{\circ}C$ to $310^{\circ}C$. The sensitivity to 1,000 ppm CO was about 150 %. The specific surface area, crystalline size, and maximum activation energy were increased significantly and the sensitivity for CO gas was improved largely.

Investigation of Spark Plasma Sintering Temperature on Microstructure and Thermoelectric Properties of p-type Bi-Sb-Te alloys

  • Han, Jin-Koo;Shin, Dong-won;Madavali, Babu;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.115-121
    • /
    • 2017
  • In this work, p-type Bi-Sb-Te alloys powders are prepared using gas atomization, a mass production powder preparation method involving rapid solidification. To study the effect of the sintering temperature on the microstructure and thermoelectric properties, gas-atomized powders are consolidated at different temperatures (623, 703, and 743 K) using spark plasma sintering. The crystal structures of the gas-atomized powders and sintered bulks are identified using an X-ray diffraction technique. Texture analysis by electron backscatter diffraction reveals that the grains are randomly oriented in the entire matrix, and no preferred orientation in any unique direction is observed. The hardness values decrease with increasing sintering temperature owing to a decrease in grain size. The conductivity increases gradually with increasing sintering temperature, whereas the Seebeck coefficient decreases owing to increases in the carrier mobility with grain size. The lowest thermal conductivity is obtained for the bulk sintered at a low temperature (603 K), mainly because of its fine-grained microstructure. A peak ZT of 1.06 is achieved for the sample sintered at 703 K owing to its moderate electrical conductivity and sustainable thermal conductivity.

Current and Future Trends of District Heating System for a Sustainable Future and Greenhouse Gas Reduction (온실가스 감축 및 지속가능 미래를 위한 집단에너지사업 방향)

  • Jung, Min-Jung;Park, Jin-Kyu;Ahn, Deog-Yong;Lee, Nam-Hoon
    • Journal of Climate Change Research
    • /
    • v.8 no.4
    • /
    • pp.377-384
    • /
    • 2017
  • Amid growing concerns about energy security, energy prices, economic competitiveness, and climate change, district heating (DH) system has been recognized for its significant benefits and the part it can play in efficiently meeting society's growing energy demands while reducing environmental impacts. Policy makers often need to quantify the fuel and carbon dioxide ($CO_2$) emissions savings of DH system compared to conventional individual heating (IH) system in order to estimate its actual emissions reductions. The objective of this paper is to calculate energy efficiency and $CO_2$ emissions saving, and to propose the future direction for DH system in Korea. DH system achieved total system efficiencies of 67.9% compared to 54.1% for IH system in 2015. DH system reduced $CO_2$ emissions by $381,311ton-CO_2$ (4.1%) compared to IH system. The results suggest that DH system is more preferred than IH system using natural gas. In Korea, the aim is to reduce dependence on fossil fuels and to use energy more efficiently. DH system have significant potential with regard to achieving this aim, because DH system are already integrated with power generation in the electricity since combined heating and power (CHP) are used for heat supply. Although the future conditions for DH may look promising, the current DH system in Korea must be enhanced in order to handle future competition. Thus, the next DH system must be integrated with multiple renewable energy and waste heat energy sources.

Electrical and structural characteristics of AZO thin films deposited by reactive sputtering (Reactive sputtering 법으로 증착된 AZO 박막의 전기적 및 구조적 특성)

  • Heo, Ju-Hee;Lee, Yu-Lim;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2009
  • We have investigated the effect of the ambient gases on the characteristics of AZO thin films for the OLED (organic light emitting diodes) devices. These AZO thin films are deposited by rf-magnetron sputtering under different ambient gases (Ar, Ar+$O_2$, and Ar+$H_2$) at 300. In order to investigate the influences of the oxygen and hydrogen, the flow rate of oxygen and hydrogen in argon mixing gas has been changed from 0.2sccm to 1sccm and from 0.5sccm to 5sccm, respectively. The AZO thin films were preferred oriented to (002) direction regardless of ambient gases. The electrical resistivity of AZO film increased with increasing flow rate of $O_2$ under Ar+$O_2$ while under Ar+$H_2$ atmosphere the electrical resistivity showed minimum value near 1sccm of $H_2$. All the films showed the average transmittance over 80% in the visible range. The OLED device was fabricated with different AZO substrates made by configuration of AZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of AZO substrate.

  • PDF

EFFECT OF $SiF_4$ADDITION ON THE STRUCTURES OF SILICON FILMS DEPOSITED AT LOW TEMPERATURE BY REMOTE PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

  • Xiaodong Li;Park, Young-Bae;Kim, Dong-Hwan;Rhee, Shi-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.64-68
    • /
    • 1995
  • Silicon films were deposited at $430^{\circ}C$ by remote plasma chemical vapor deposition(RPECVD) with a gas mixture of $Si_2H_6/SiF_4/H_2$. The silicon films deposited without and with $SiF_4$ were characterized using atomic force microscopy(AFM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Both silicon films have the same rugged surface morphology, but, the silicon film deposited with $SiF_4$ exhibits more rugged. The silicon film deposited without $SiF_4$ is amorphous, whereas the silicon film deposited with $SiF_4$ is polycrystalline with very small needle-like grains which are perpendicular to the substrate and uniformly distributed in the thickness of the film. The silicon film deposited with $SiF_4$ was found to have a preferred orientation along the growth direction with the<110> of the film parallel to the <111> of the substrate. The effect of $SiF_4$ during RPECVD was discussed.

  • PDF

Electrical and Structural Properties of GAZO Films Deposited by DC Magnetron Co-sputtering System with Two Cathodes (DC 마그네트론 Co-sputtering 시스템을 이용하여 증착한 GAZO 박막의 전기적 및 구조적 특성)

  • Jie, Luo;Park, Se-Hun;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.122-127
    • /
    • 2009
  • Ga/Al doped ZnO (GAZO) thin films were prepared on non-alkali glass substrate by co-sputtering system using two DC cathodes equipped with AZO ($Al_2O_3$:2.0 wt%) target and GZO ($Ga_2O_3$:6.65 wt%) target. This study examined the influence of Al/Ga concentration and substrate temperature on the electrical, structural and optical properties of GAZO films. The lowest resistivity $1.95{\times}10^{-3}{\Omega}cm$ was obtained at room temperature. With increasing substrate temperature, resistivity of GAZO film decreased to a minimum value of $7.47{\times}10^{-4}{\Omega}cm$ at below $300^{\circ}C$. Furthermore, when 0.05% $H_2$ gas was introduced, resistivity of GAZO film decreased to $6.69{\times}10^{-4}{\Omega}cm$. All the films had a preferred orientation along the (002) direction, indicating that the deposited films have hexagonal wurtzite structure formed by the textured growth along the c-axis. The average transmittance of the films was more than 85% in the visible light range.