• 제목/요약/키워드: Prefabricated material

검색결과 60건 처리시간 0.026초

Fabrication of Metal Nanobridge Arrays using Sacrificial Silicon Nanowire

  • Lee, Kook-Nyung;Lee, Kyoung-Gun;Jung, Suk-Won;Lee, Min-Ho;Seong, Woo-Kyeong
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.396-400
    • /
    • 2012
  • Novel fabrication method of nanobridge array of various materials was proposed using suspended silicon nanowire array as a sacrificial template structure. Nanobridges of various materials can be simply fabricated by direct deposition with thermal evaporation on the top of prefabricated suspended silicon nanobridge arrays, which are used as a sacrificial structure. Since silicon nanowire can be easily removed by selective dry etching, nanobridge arrays of an intended material are finally obtained. In this paper, metal nanobridges of Ti/Au, around 50-200 nm in thickness and width, 5-20 ${\mu}m$ in length were fabricated to prove the advantages of the proposed nanowire or nanobridge fabrication method. The nanobridges of Ti/Au after complete removal of sacrificial silicon nanowire template were well-established and bending of nanobridge caused by the tensile stress was observed after silicon removing. Up to 50 nm and 10 ${\mu}m$ of silicon nanowire in diameter and length respectively was also very useful for nanowire templates.

한옥의 모듈러 공법 적용에 관한 연구 (Study on the Application of Modular Technologies to Han-ok)

  • 이창재;임석호
    • 한국주거학회논문집
    • /
    • 제23권4호
    • /
    • pp.49-57
    • /
    • 2012
  • This study was conducted to apply the modular construction method to Han-ok. The modular method, which is differentiated from the existing one, means a construction method that equipments, windows and interior materials are prefabricated as a six-sided object at a plant and then they are assembled at the least process on the spot. As for the theoretical observation, the theoretical basis to apply the modular method to the modular housing and Hanok was divided into environmental and economic aspect. In order to apply the modular method to Hanok, the unit scale and size were selected and the plane of unit module Hanok was developed. And a standard with regard to the unit combination and material lifting transportation method was set and planned. In addition, through the comparison the unit modular Hanok to the existing Hanok, the difference was analyzed and the strength was identified in terms fo design method, structure, construction method, period and cost. In final, the conclusion, with regard to the economic, technical application in future, was drawn through arranging the study contents. The unit modular Hanok to carry out the high-quality dwelling through construction period reduction, standardized construction materials and improved insulation performance can meet the demands for a paradigm of new construction technology.

A Study on the Current-Voltage Characteristics of Self-Assembled Organic Molecules by using STM

  • Kim Seung-Un;Shin Hoon-Kyu;Kwon Young-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.115-118
    • /
    • 2005
  • Currently, molecular devices are reported utilizing active self-assembled monolayers (SAMs) containing the nitro group as the active component, which has active redox centers [1]. SAMs are ordered molecular structures formed by the adsorption of an active surfactant on a solid surface. The molecules will be spontaneously oriented toward the substrate surface and form an energetically favorable ordered layer. During this process, the surface-active head group of the molecule chemically reacts with and chemisorbs onto the substrate In this paper, the electrical properties of the 4'4- di(ethynylphenyl)-2'-nitro-1-benzenethiolate was confirmed. This material is well known as a conducting molecule having possible application to molecular level negative differential resistance (NDR) device. To deposit the self-assembly monolayers onto the gold electrode, the prefabricated Au(1 l l) substrates were immersed into 0.5[mM/l] self-assembly molecule in THF solution. Then, the electrical properties and surface morphologies of 4' 4-di(ethynylphenyl)-2' -nitro-1-benzenethiolate were measured by using the ultra-high vacuum scanning tunneling microscopy (UHV-STM).

A study on rotational behaviour of a new industrialised building system connection

  • Moghadasi, Mostafa;Marsono, Abdul Kadir;Mohammadyan-Yasouj, Seyed Esmaeil
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.245-255
    • /
    • 2017
  • The performance of an Industrialised Building System (IBS) consists of prefabricated reinforced concrete components, is greatly affected by the behaviour of the connection between beam and columns. The structural characteristics parameters of a beam-to-column connection like rotational stiffness, strength and ductility can be explained by load-rotation relationship of a full scale H-subframe under gravitational load. Furthermore, the connection's degree of rigidity directly influences the behaviour of the whole frame. In this research, rotational behaviour of a patented innovative beam-to-column connection with unique benefits like easy installation, no wet work, no welding work at assembly site, using a hybrid behaviour of steel and concrete, easy replacement ability, and compatibility with architecture was investigated. The proposed IBS beam-to-column connection includes precast concrete components with embedded steel end connectors. Two full-scale H-subframes constructed with a new IBS and conventional cast in-situ reinforced concrete system beam-to-column connections were tested under incremental static loading. In this paper, load-rotation relationship and ratio of the rigidity of IBS beam-to-column connection are studied and compared with conventional monolithic reinforced concrete connection. It is concluded that this new IBS beam-to-column connection benefits from more rotational ductility than the conventional reinforced concrete connection. Furthermore, the semi-rigid IBS connection rigidity ratio is about 44% of a full rigid connection.

MFD 2019를 활용한 모듈러 유닛의 공장생산 관리 (Factory Production Management of Modular Units Using MFD 2019)

  • 이두용;남성훈;이재섭;정담이;김경래;조봉호
    • 대한건축학회논문집:구조계
    • /
    • 제35권6호
    • /
    • pp.139-146
    • /
    • 2019
  • The modular building system is a type of prefabricated construction method, and is an industrialized building system that transports, assembles, and completes a three-dimensional module manufactured in a factory to the site. The economics of a modular building system where 50 to 80% of the entire process takes place in a modular factory is dominated by productivity of the factory manufacturing process. Since the building of the module is finished by the combination of unit parts produced by each material, it is necessary to manage the process in each module unit. However, currently marketed process control programs do not reflect the features of these modular methods. In this paper, we introduce Modular Factory Design software(MFD 2019) that can make modular unit production plan which reflects production base(modular factory) and production target(application and number of modular units). In order to verify software compatibility and reliability, two production plans with different production methods were formulated and simulated.

조립식 저류형 침투시설의 설계 및 공간적용 효과분석 (Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility)

  • 이태구
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

Accuracy of a separating foil impression using a novel polyolefin foil compared to a custom tray and a stock tray technique

  • Pastoret, Marie-Helene;Krastl, Gabriel;Buhler, Julia;Weiger, Roland;Zitzmann, Nicola Ursula
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권4호
    • /
    • pp.287-293
    • /
    • 2017
  • PURPOSE. To compare the dimensional accuracy of three impression techniques- a separating foil impression, a custom tray impression, and a stock tray impression. MATERIALS AND METHODS. A machined mandibular complete-arch metal model with special modifications served as a master cast. Three different impression techniques (n = 6 in each group) were performed with addition-cured silicon materials: i) putty-wash technique with a prefabricated metal tray (MET) using putty and regular body, ii) single-phase impression with custom tray (CUS) using regular body material, and iii) two-stage technique with stock metal tray (SEP) using putty with a separating foil and regular body material. All impressions were poured with epoxy resin. Six different distances (four intra-abutment and two inter-abutment distances) were gauged on the metal master model and on the casts with a microscope in combination with calibrated measuring software. The differences of the evaluated distances between the reference and the three test groups were calculated and expressed as mean (${\pm}SD$). Additionally, the 95% confidence intervals were calculated and significant differences between the experimental groups were assumed when confidence intervals did not overlap. RESULTS. Dimensional changes compared to reference values varied between -74.01 and $32.57{\mu}m$ (MET), -78.86 and 30.84 (CUS), and between -92.20 and 30.98 (SEP). For the intra-abutment distances, no significant differences among the experimental groups were detected. CUS showed a significantly higher dimensional accuracy for the inter-abutment distances with -0.02 and -0.08 percentage deviation compared to MET and SEP. CONCLUSION. The separation foil technique is a simple alternative to the custom tray technique for single tooth restorations, while limitations may exist for extended restorations with multiple abutment teeth.

구강악안면영역에서의 MedporTM의 임상적용 (THE USE OF MEDPORTM(POROUS HIGH-DENSITY POLYETHYLENE) IN ORAL AND MAXILLOFACIAL REGION)

  • 박광범;여환호;김수관
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제21권1호
    • /
    • pp.60-64
    • /
    • 1999
  • Recently, for the reconstruction of bony defect and cosmetic improvement, many graft materials and implants have been widely used in the various surgical situations. The alloplastic materials have many advantages such as simplicity of operation, no additional need of surgery, and easy manipulation. The $Medpor^{TM}$(porous high-density polyethylene, Porex Co., USA) was initially studied in 1972 for surgical implant and introduced as an implant material for oral and maxillofacial region by Sauer and King in 1988. This material permits full ingrowth of bone into the implants, substantially increasing the implant's incorporation into the recipient site. It can be shaved during the surgery, which results in an improvement and prefabricated various size and shapes to fit into the surgical defect. The $Medpor^{TM}$ was used in 32 patients from 1995 to 1997 at the maxillofacial region. It was used for paranasal augmentation in 24 cases, for malar augmentation in 2 cases, for infraorbital augmentation in 2 cases, for mandibular angle augmentation in 2 cases, for mandibular body augmentation in 2 cases, for chin vertical augmentation in 1 case. It was mainly fixed with miniplate or screw. There were few complications except one infection and one exposure of the implant.

  • PDF

Use of 3D Printing Model for the Management of Fibrous Dysplasia: Preliminary Case Study

  • Choi, Jong-Woo;Jeong, Woo Shik
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권1호
    • /
    • pp.36-38
    • /
    • 2016
  • Fibrous dysplasia is a relatively rare disease but the management would be quite challenging. Because this is not a malignant tumor, the preservation of the facial contour and the various functions seems to be important in treatment planning. Until now the facial bone reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for facial bone reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile, various types of allogenic and alloplastic materials have been also used. However, facial bone reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original maxillary anatomy as possible using the 3D printing model, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we molded Titanium mesh to reconstruct three-dimensional maxillary structure during the operation. This prefabricated Titanium-mesh implant was then inserted onto the defected maxilla and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be successful in this patient. Individualized approach for each patient could be an ideal way to restore the facial bone.

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권2호
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.