• Title/Summary/Keyword: Preemptive Priority

Search Result 64, Processing Time 0.03 seconds

(N, n)-Preemptive Repeat-Different Priority Queues ((N, n)-선점 재샘플링-반복 우선순위 대기행렬)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.66-75
    • /
    • 2017
  • Priority disciplines are an important scheme for service systems to differentiate their services for different classes of customers. (N, n)-preemptive priority disciplines enable system engineers to fine-tune the performances of different classes of customers arriving to the system. Due to this virtue of controllability, (N, n)-preemptive priority queueing models can be applied to various types of systems in which the service performances of different classes of customers need to be adjusted for a complex objective. In this paper, we extend the existing (N, n)-preemptive resume and (N, n)-preemptive repeat-identical priority queueing models to the (N, n)-preemptive repeat-different priority queueing model. We derive the queue-length distributions in the M/G/1 queueing model with two classes of customers, under the (N, n)-preemptive repeat-different priority discipline. In order to derive the queue-length distributions, we employ an analysis of the effective service time of a low-priority customer, a delay cycle analysis, and a joint transformation method. We then derive the first and second moments of the queue lengths of high- and low-priority customers. We also present a numerical example for the first and second moments of the queue length of high- and low-priority customers. Through doing this, we show that, under the (N, n)-preemptive repeat-different priority discipline, the first and second moments of customers with high priority are bounded by some upper bounds, regardless of the service characteristics of customers with low priority. This property may help system engineers design such service systems that guarantee the mean and variance of delay for primary users under a certain bounds, when preempted services have to be restarted with another service time resampled from the same service time distribution.

M/G/1 Preemptive Priority Queues With Finite and Infinite Buffers (유한 및 무한 용량 대기열을 가지는 선점 우선순위 M/G/1 대기행렬)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.1-14
    • /
    • 2020
  • Recently, M/G/1 priority queues with a finite buffer for high-priority customers and an infinite buffer for low-priority customers have applied to the analysis of communication systems with two heterogeneous traffics : delay-sensitive traffic and loss-sensitive traffic. However, these studies are limited to M/G/1 priority queues with finite and infinite buffers under a work-conserving priority discipline such as the nonpreemptive or preemptive resume priority discipline. In many situations, if a service is preempted, then the preempted service should be completely repeated when the server is available for it. This study extends the previous studies to M/G/1 priority queues with finite and infinite buffers under the preemptive repeat-different and preemptive repeat-identical priority disciplines. We derive the loss probability of high-priority customers and the waiting time distributions of high- and low-priority customers. In order to do this, we utilize the delay cycle analysis of finite-buffer M/G/1/K queues, which has been recently developed for the analysis of M/G/1 priority queues with finite and infinite buffers, and combine it with the analysis of the service time structure of a low-priority customer for the preemptive-repeat and preemptive-identical priority disciplines. We also present numerical examples to explore the impact of the size of the finite buffer and the arrival rates and service distributions of both classes on the system performance for various preemptive priority disciplines.

STABILITY CONDITION OF DISCRETE-TIME $GEO^x$/G/1 QUEUE WITH PREEMPTIVE REPEAT PRIORITY

  • Lee, Yutae
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.291-297
    • /
    • 2003
  • This paper considers discrete-time two-class Ge $o^{X/}$G/1 queues with preemptive repeat priority. Service times of messages of each priority class are i.i.d. according to a general discrete distribution function that may differ between two classes. Completion times are derived for the preemptive repeat identical and different priority disciplines. By using the completion time, the stability condition for our system is investigated.d.

The Analysis of an Opportunistic Spectrum Access with a Strict T-preemptive Priority Discipline (엄격한 T-축출 우선순위 대기행렬을 이용한 기회 주파수 접근 방식의 성능 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.162-170
    • /
    • 2012
  • We propose a new priority discipline called the strict T-preemptive priority discipline, and derive the waiting time distributions of each class in the strict T-preemptive priority M/G/1 queue. Using this queueing analysis, we evaluate the performance of an opportunistic spectrum access in cognitive radio networks, where a communication channel is divided into time slots, a licensed primary user is assigned to one channel, and multiple unlicensed secondary users may opportunistically exploit time slots unused by the primary user. We also present a numerical example of the analysis of the opportunistic spectrum access where the arrival rates and service times distributions of each users are identical.

AN M/G/1 QUEUEING SYSTEM WITH MULTIPLE PRIORITY CLASSES

  • Han, Dong-Hwan
    • Journal of applied mathematics & informatics
    • /
    • v.1 no.1
    • /
    • pp.55-74
    • /
    • 1994
  • We consider an M/G/1 queueing system with multiple priority classes of jobs. Considered preemptive rules are the preemptive-resume preemptive-repeat-identical, and preemptive-repeat-different policies. These three preemptive rules will be analyzed in parallel. The key idea of analysis is based on the consideration of a busy period as composite of delay cycle. As results we present the exact Laplace-Stieltjecs(L.S) transforms of residence time and completion time in the system.

Two-Sided Assembly Line Balancing with Preemptive Multiple Goals Using an Evolutionary Algorithm (진화알고리즘을 이용한 선취적 다목표 양면조립라인 밸런싱)

  • Song, Won-Seop;Kim, Yeo-Keun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.2
    • /
    • pp.101-111
    • /
    • 2009
  • This paper considers two-sided assembly line balancing with preemptive multiple goals. In the problem, three goals are taken into account in the following priority order : minimizing the number of mated-stations, achieving the goal level of workload smoothness, and maximizing the work relatedness. An evolutionary algorithm is used to solve the multiple goal problems. A new structure is presented in the algorithm, which is helpful to searching the solution satisfying the goals in the order of the priority. The proper evolutionary components such as encoding and decoding method, evaluation scheme, and genetic operators, which are specific to the problem being solved, are designed in order to improve the algorithm's performance. The computational results show that the proposed algorithm is premising in the solution quality.

Non-preemptive Queueing Model of Spectrum Handoff Scheme Based on Prioritized Data Traffic in Cognitive Wireless Networks

  • Bayrakdar, Muhammed Enes;Calhan, Ali
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.558-569
    • /
    • 2017
  • In this study, a non-preemptive M/G/1 queueing model of a spectrum handoff scheme for cognitive wireless networks is proposed. Because spectrum handoff gives secondary users an opportunity to carry on their transmissions, it is crucially important to determine the actions of primary users. In our queueing model, prioritized data traffic is utilized to meet the requirements of the secondary users. These users' packets are categorized into three different priority classes: urgent, real-time, and non-real time. Urgent data packets have the highest priority, while non-real time data packets have the lowest priority. Riverbed (OPNET) Modeler simulation software was used to simulate both reactive and proactive decision spectrum handoff schemes. The simulation results were consistent with the analytical results obtained under different load and traffic conditions. This study also revealed that the cumulative number of handoffs can be drastically decreased by exploiting priority classes and utilizing a decent spectrum handoff strategy, such as a reactive or proactive decision-based strategy.

Preemptive Ethernet Controller to Improve Real-Time Characteristics of IEC 61850 Protocol (IEC 61850 프로토콜의 실시간성 향상을 위한 선점형 이더넷 컨트롤러)

  • Lee, Bum-Yong;Park, Tae-Rim;Park, Jae-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1923-1928
    • /
    • 2010
  • The IEC 61850 protocol proposed for the interoperability between IEDs(intelligent electronic devices) adopts the prioritized switched ethernet as its communication channel because substation bus is utilized to exchange both real-time and non real-time messages. The prioritized switched ethernet uses IEEE 802.1Q/p QoS(Quality of Service) in addition to IEEE 802.3 ethernet to enhance the real-time characteristics. However, IEEE 802.1Q/p QoS has priority-blocking problem that occurs when higher-priority frame transmission request during lower-priority frame transmission. To resolve this problem, this paper proposes P(Preemptive)-Ethernet. P-Ethernet uses the modified IEEE 802.1Q/p frame format and new priority preemption mechanism. This paper also implements P-Ethernet controller using FPGA (Virtex-4) and MicroBlaze processor. From the implementation results, P-Ethernet controller shows a improved latency and jitter of transmission period compare to the normal ethernet controller.

Method for Reduction of Power Consumption using Buffer Processing Time Control in Home Gateway (홈 게이트웨이에서 서비스 특성에 따른 버퍼 동작 시간 제어를 통한 전력 소비 감소 방안)

  • Yang, Hyeon;Yu, Gil-Sang;Kim, Yong-Woon;Choi, Seong-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.69-76
    • /
    • 2012
  • This paper proposes an efficient power consumption scheme using sleep mode in home gateway. The scheme by this paper classifies incoming real time packet and non-real time packet in home gateway and delay non-real time packet. Therefore, the home gateway can have longer sleep time because non-real time packet can get additional delay time by proposing mechanism using timer. We use non-preemptive two priority queueing model for performance analysis. As a results, we verify that power consumption of proposed scheme is reduced more than existing scheme by delay of non-real time traffic.

Design and Analsis of a high speed switching system with two priority (두개의 우선 순위를 가지는 고속 스윗칭 시스템의 설계 및 성능 분석)

  • Hong, Yo-Hun;Choe, Jin-Sik;Jeon, Mun-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.793-805
    • /
    • 2001
  • In the recent priority system, high-priority packet will be served first and low-priority packet will be served when there isn\`t any high-priority packet in the system. By the way, even high-priority packet can be blocked by HOL (Head of Line) contention in the input queueing System. Therefore, the whole switching performance can be improved by serving low-priority packet even though high-priority packet is blocked. In this paper, we study the performance of preemptive priority in an input queueing switch for high speed switch system. The analysis of this switching system is taken into account of the influence of priority scheduling and the window scheme for head-of-line contention. We derive queue length distribution, delay and maximum throughput for the switching system based on these control schemes. Because of the service dependencies between inputs, an exact analysis of this switching system is intractable. Consequently, we provide an approximate analysis based on some independence assumption and the flow conservation rule. We use an equivalent queueing system to estimate the service capability seen by each input. In case of the preemptive priority policy without considering a window scheme, we extend the approximation technique used by Chen and Guerin [1] to obtain more accurate results. Moreover, we also propose newly a window scheme that is appropriate for the preemptive priority switching system in view of implementation and operation. It can improve the total system throughput and delay performance of low priority packets. We also analyze this window scheme using an equivalent queueing system and compare the performance results with that without the window scheme. Numerical results are compared with simulations.

  • PDF