• Title/Summary/Keyword: Preece's identity

Search Result 6, Processing Time 0.019 seconds

A GENERALIZATION OF PREECE`S IDENTITY

  • Kim, Yong-Sup;Arjun K.Rathie
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.217-222
    • /
    • 1999
  • The aim of this research is to provide a generalization of the well-known, interesting and useful identity due to Preece by using classical Dixon`s theorem on a sum of \ulcornerF\ulcorner.

  • PDF

ON PREECE'S IDENTITY AND OTHER CONTIGUOUS RESULTS

  • CHOI, JUNE-SANG;RATHIE ARJUN K.;BHOJAK BHARTI
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Five results closely related to the well-known Preece's identity obtained earlier by Choi and Rathie will be derived here by using some known hypergeometric identities. In addition to this, the identities obtained earlier by Choi and Rathie have also been written in a compact form.

An Identity Involving Product of Generalized Hypergeometric Series 2F2

  • Kim, Yong Sup;Choi, Junesang;Rathie, Arjun Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.293-299
    • /
    • 2019
  • A number of identities associated with the product of generalized hypergeometric series have been investigated. In this paper, we aim to establish an identity involving the product of the generalized hypergeometric series $_2F_2$. We do this using the generalized Kummer-type II transformation due to Rathie and Pogany and another identity due to Bailey. The result presented here, being general, can be reduced to a number of relatively simple identities involving the product of generalized hypergeometric series, some of which are observed to correspond to known ones.

A NOTE ON GENERALIZATIONS OF BAILEY'S IDENTITY INVOLVING PRODUCTS OF GENERALIZED HYPERGEOMETRIC SERIES

  • Kilicman, Adem;Kurumujji, Shantha Kumari;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.575-583
    • /
    • 2022
  • In the theory of hypergeometric and generalized hypergeometric series, the well-known and very useful identity due to Bailey (which is a generalization of the Preece's identity) plays an important role. The aim of this research paper is to provide generalizations of Bailey's identity involving products of generalized hypergeometric series in the most general form. A few known, as well as new results, have also been obtained as special cases of our main findings.