• 제목/요약/키워드: Predictor-Corrector Scheme

검색결과 34건 처리시간 0.024초

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • 제41권8호
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

940K bbls FPSO의 선수갑판 Green Water에 관한 연구 (A Study of Green Water on the Bow Deck of 940K bbls FPSO)

  • 김용직;신기석;추교덕;서용석;이춘기;김문성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.309-313
    • /
    • 2004
  • Prediction of green water loads acting an the bow deck is an essential part for the design of bow structures against the green water impact. Proper technique of the green water simulation is highly required for the prediction of green water loads. In this paper, a new numerical method for green water simulation, which is based an predictor-corrector-upwind finite difference scheme of the 2nd kind, is introduced. Through the comparisons between computed' results and experimental measurements, it is verified that the present numerical tool is adequate as a practical calculation tool for the green water problem.

  • PDF

C]RASH ANALYSIS OF AUTO-BODY STRUCTURES CONSIDERING THE STRAIN-RATE HARDENING EFFECT

  • Kang, W.J.;Huh, H.
    • International Journal of Automotive Technology
    • /
    • 제1권1호
    • /
    • pp.35-41
    • /
    • 2000
  • The crashworthiness of vehicles with finite element methods depends on the geometry modeling and the material properties. The vehicle body structures are generally composed of various members such as frames, stamped panels and deep-drawn parts from sheet metals. In order to ensure the impact characteristics of auto-body structures, the dynamic behavior of sheet metals must be examined to provide the appropriate constitutive relation. In this paper, high strain-rate tensile tests have been carried out with a tension type split Hopkinson bar apparatus specially designed for sheet metals. Experimental results from both static and dynamic tests with the tension split Hopkinson bar apparatus are interpolated to construct the Johnson-Cook and a modified Johnson-Cook equation as the constitutive relation, that should be applied to simulation of the dynamic behavior of auto-body structures. Simulation of auto-body structures has been carried out with an elasto-plastic finite element method with explicit time integration. The stress integration scheme with the plastic predictor-elastic corrector method is adopted in order to accurately keep track of the stress-strain relation for the rate-dependent model accurately. The crashworthiness of the structure with quasi-static constitutive relation is compared to the one with the rate-dependent constitutive model. Numerical simulation has been carried out for frontal frames and a hood of an automobile. Deformed shapes and the Impact energy absorption of the structure are investigated with the variation of the strain rate.

  • PDF

Beam finite element model of a vibrate wind blade in large elastic deformation

  • Hamdi, Hedi;Farah, Khaled
    • Wind and Structures
    • /
    • 제26권1호
    • /
    • pp.25-34
    • /
    • 2018
  • This paper presents a beam finite element model of a vibrate wind blade in large elastic deformation subjected to the aerodynamic, centrifugal, gyroscopic and gravity loads. The gyroscopic loads applied to the blade are induced by her simultaneous vibration and rotation. The proposed beam finite element model is based on a simplex interpolation method and it is mainly intended to the numerical analysis of wind blades vibration in large elastic deformation. For this purpose, the theory of the sheared beams and the finite element method are combined to develop the algebraic equations system governing the three-dimensional motion of blade vibration. The applicability of the theoretical approach is elucidated through an original case study. Also, the static deformation of the used wind blade is assessed by appropriate software using a solid finite element model in order to show the effectiveness of the obtained results. To simulate the nonlinear dynamic response of wind blade, the predictor-corrector Newmark scheme is applied and the stability of numerical process is approved during a large time of blade functioning. Finally, the influence of the modified geometrical stiffness on the amplitudes and frequencies of the wind blade vibration induced by the sinusoidal excitation of gravity is analyzed.

자유표면 환경유동에 대한 비정수압 효과 (Effects of Non-hydrostatic Pressure on Free Surface Environmental Flows)

  • 윤범상;박철우
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제8권3호
    • /
    • pp.116-121
    • /
    • 2005
  • 본 연구에서는 자유표면을 갖는 대규모의 환경유동의 해를 구하는데 있어 비정수압의 효과를 고려하는 새로운 계산 기법을 제시하였다. Sigma 좌표계에서 시간은 전진차분으로, 공간은 중간차분 및 풍상차분을 혼합하여 2단계 해법을 도입하였다. 계산기법의 타당성과 유효성을 검증하기 위하여, 자유표면을 갖는 정상유동과 비정상유동에 대한 전형적인 예를 설정하여 정수압 계산과 비정수압 계산을 수행하고 이들을 비교하였다. 계산결과 복잡한 해저지형을 갖는 자유표면 유동에 있어, 지정수압효과가 무시할 수 없는 유동영역이 존재함이 입증되었으며, MAC기법과 같은 3차원 유체동역학적 기법을 적용하기에는 비경제적인 문제에 대해 본 계산기법이 매우 유효하게 적용될 수 있다는 가능성이 입증되었다.

  • PDF

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.

비정상 CH$_4$/공기 제트 확산화염에 관한 수치모사 (Numerical Simulation of Unsteady CH$_4$/Air Jet Diffusion Flame)

  • 이창언;오창보
    • 대한기계학회논문집B
    • /
    • 제25권8호
    • /
    • pp.1087-1096
    • /
    • 2001
  • The dynamic structures of unsteady CH$_4$/Air jet diffusion flame with a flame-vortex interaction were numerically investigated. A timed-dependent, axisymmetric computational model and a low mach number approximation were employed in the present calculation. A two-step global reaction mechanism which considers 6 species, was used to calculate the reaction rates. The predicted results including the gravitational effect show that the large outer vortices and the small inner vortices can be well simulated without any additional disturbances near nozzle tip. It was found that the temperature and species concentrations have deviated values even for the same mixture fraction in the flame-vortex interaction region. It was also shown that the flame surface is not deformed by the inner vortex in upstream region, while in downstream region, the flame surface is compressed or stretched by the outer vortex roll-up. The present unsteady jet flame configuration accompanying a flame-vortex interaction is expected to give good implications for the unsteady structures of turbulent flames.

Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형 (Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall)

  • 노희명;유순호;한경화;이승헌;이군택;윤석인;노영동
    • 한국토양비료학회지
    • /
    • 제36권4호
    • /
    • pp.181-192
    • /
    • 2003
  • 기상 자료와 토양 수리 특성을 입력하여 토양수분의 수직 이동 및 분포를 예측할 수 있는 수치모형을 개발하고, 이 모형을 검정하기 위해 중동사양토를 대상으로 추정한 결과와 중성자 산란법에 의해 측정한 수분단면을 비교하였다. 이 모형에서 토양수분 포텐셜을 기준으로 한 Richards 방정식의 해를 predictor-corrector 격자에 투영한 음함수 유한차분법에 의해 구하였다. 이 모형에서는 토양단면의 수리특성은 균질하고, 토양수분은 등온적으로 흐르고, 수분이력현상은 고려하지 않고, 수증기 및 열 이동은 일어나지 않고, 빗물은 토양 단면에 부분 치환원리에 의해 분배된다고 가정하였다. 이 모형의 입력 자료는 크게 강우량, 최고 및 최저 기온, 상대습도 및 일사량의 일일 기상자료와 불포화 수리전도도 및 수분보유 특성 함수를 추정하기 위한 토양 수리 자료로 구분하였다. Chebyshev 다항식과 최소 자승차를 이용하여 추정한 토양 수리 다항식은 입력 자료와 매우 잘 일치하였다. 다양한 지표 및 하부 경계조건에서 53일 동안 상대적으로 시간증가분을 크게 하여 추정한 Richards 방정식의 해인 토양수분 수직 단면은 지표 10 cm를 제외하고는 중성자 산란법에 의해 측정한 결과와 잘 일치하였다.

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • 제10권2호
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

반응 및 비반응 제트 유동장에서 단일 와동의 전개 및 구조에 대한 수치모사 (Numerical Simulation of the Evolution and Structure of a Single Vortex in Reacting and Non-reacting Jet Flow Fields)

  • 황철홍;오창보;이창언
    • 한국항공우주학회지
    • /
    • 제32권10호
    • /
    • pp.28-37
    • /
    • 2004
  • 반응 및 비반응 유동장에서 단일와동의 전개 및 와(渦) 구조 검토를 위해 2 차원 직접 수치모사를 수행하였다. 수치기법으로는 낮은 마하수 근사법이 적용된 예측-교정자법이 적용되었으며, 연소모텔로는 2단계 총괄 반응식이 사용되었다. 반응 및 비반응 유동장에서 단일와동의 거동 비교를 통해, 와동의 전개특성 및 구조는 화학반응으로부터 생성된 열 뿐만 아니라 부력에 의해 생성된 외부 와동에 크게 영향을 받음을 확인하였다. 또한 반응장의 경우에 부피 팽창항, Baroclinic torque항 및 부력항에 의해 와동의 구조가 크게 변화될 수 있음을 알았다.