• 제목/요약/키워드: Predictive optimal control

검색결과 146건 처리시간 0.037초

Optimal design of the PID Controller using a predictive control method

  • Kim, Sang-Joo;Lee, Jang-Myung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권1호
    • /
    • pp.69-75
    • /
    • 2005
  • This paper is concerned with the design of a predictive PID controller, which has similar features to the model-based predictive controller. A PID type control structure is defined which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are pre-calculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with generalized predictive controller and the results are compared with generalized predictive control solutions.

A Model Predictive Controller for Nuclear Reactor Power

  • Na Man Gyun;Shin Sun Ho;Kim Whee Cheol
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.399-411
    • /
    • 2003
  • A model predictive control method is applied to design an automatic controller for thermal power control in a reactor core. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the second optimal control input is not implemented and the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize the difference between the output and the desired output and the variation of the control rod position. The nonlinear PWR plant model (a nonlinear point kinetics equation with six delayed neutron groups and the lumped thermal-hydraulic balance equations) is used to verify the proposed controller of reactor power. And a controller design model used for designing the model predictive controller is obtained by applying a parameter estimation algorithm at an initial stage. From results of numerical simulation to check the controllability of the proposed controller at the $5\%/min$ ramp increase or decrease of a desired load and its $10\%$ step increase or decrease which are design requirements, the performances of this controller are proved to be excellent.

불확실 로봇 매니퓰레이터의 견실 예측 제어기 설계 (Robust Predictive Control of Robot Manipulators with Uncertainties)

  • 김정관;한명철
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.10-14
    • /
    • 2004
  • We present a predictive control algorithm combined with the robust robot control that is constructed on the Lyapunov min-max approach. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about the model, it is an important trend to design a robust control law that guarantees the desired properties of the manipulator under uncertain elements. In the preceding robust control work, we need to tune several control parameters in the admissible set where the desired stability can be achieved. By introducing an optimal predictive control technique in robust control we can find out much more deterministic controller for both the stability and the performance of manipulators. A new class of robust control combined with an optimal predictive control is constructed. We apply it to a simple type of 2-link robot manipulator and show that a desired performance can be achieved through the computer simulation.

Predictive Control for a Fin Stabilizer

  • Yoon, Hyeon-Kyu;Lee, Gyeong-Joong;Fang, Tae-Hyun
    • 한국항해항만학회지
    • /
    • 제31권7호
    • /
    • pp.597-603
    • /
    • 2007
  • A predictive controller can solve a control problem related to a disturbance-dominant system such as roll stabilization of a ship in waves. In this paper, a predictive controller is developed for a fin stabilizer. Future wave-induced moment is modeled simply using two typical regular wave components for which six parameters are identified by the recursive Fourier transform and the least squares method using the past time series of the roll motion. After predicting the future wave-induced moment, optimal control theory is applied to discover the most effective command fin angle that will stabilize the roll motion. In the results, wave prediction performance is investigated, and the effectiveness of the predictive controller is compared to a conventional PD controller.

모델 예측 기법 기반 무인 항공기의 편대 비행 제어 알고리즘 (Formation Flight Control of Unmanned Aerial Vehicles Using Model Predictive Control)

  • 박재만;신종호;김현진
    • 제어로봇시스템학회논문지
    • /
    • 제14권12호
    • /
    • pp.1212-1217
    • /
    • 2008
  • This paper studies the feasibility of using the nonlinear model predictive control as a formation flight control algorithm for unmanned aerial vehicles. The optimal control inputs for formation flight are calculated through the cost function which incorporates the relative positions of the individual vehicles to maintain a desired formation and also the inequality constraints on inputs and states using the Karush-Kuhn-Tucker conditions. In the nonlinear model predictive control setting, the optimal control inputs are implemented in a receding horizon manner, which is suitable for dealing with dynamic constraints. Numerical simulations are executed for the validation of the proposed scheme.

입력제한이 있는 경우의 예측제어 (Predictive control with input constraints)

  • 지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.171-175
    • /
    • 1992
  • In this paper, we derive the optimal input-constrained control law which minimizes predictive control objective function subject to input constraints. In order to obtain the closed form of control law, three suboptimal methods are proposed and evaluated by simulation.

  • PDF

최적화된 신경회로망을 이용한 동적물체의 비주얼 서보잉 (Visual servoing of robot manipulators using the neural network with optimal structure)

  • 김대준;전효병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.302-305
    • /
    • 1996
  • This paper presents a visual servoing combined by Neural Network with optimal structure and predictive control for robotic manipulators to tracking or grasping of the moving object. Using the four feature image information from CCD camera attached to end-effector of RV-M2 robot manipulator having 5 dof, we want to predict the updated position of the object. The Kalman filter is used to estimate the motion parameters, namely the state vector of the moving object in successive image frames, and using the multi layer feedforward neural network that permits the connection of other layers, evolutionary programming(EP) that search the structure and weight of the neural network, and evolution strategies(ES) which training the weight of neuron, we optimized the net structure of control scheme. The validity and effectiveness of the proposed control scheme and predictive control of moving object will be verified by computer simulation.

  • PDF

제한조건물 고려한 조미동 위치제어 시스템의 최적제어 (Optimal Control of a Coarse/Fine Position Control System with Constraints)

  • 주완규;최기상;최기흥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.344-344
    • /
    • 2000
  • Recently, the demand for high precision and large stroke in linear positioning systems is increasing in industry. A coarse-fine position control system composed of a linear motor and a piezoelectric actuator has such characteristics. Many optimal control laws have been applied to the position control of coarse-fine actuators but most of them did not take account into constraints. In this study, model predictive control (MPC) method with constraints is applied to the position control of the coarse-fine actuator and the performance of MPC is compared with those of conventional control laws.

  • PDF

The PID Controller for Predictive control Algorithm

  • Kim, Sang-Joo;Seo, Sang-Wook;Kim, Gi-Du;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.608-613
    • /
    • 2004
  • This paper is concerned with the design of a predictive PID controller, which has similar features to the model-based predictive controller. A PID type control structure is defined which includes prediction of the outputs and the recalculation of new set points using the future set point data. The optimal values of the PID gains are pre-calculated using the values of gains calculated from an unconstrained generalized predictive control algorithm. Simulation studies demonstrate the performance of the proposed controller and the results are compared with generalized predictive controller and the results are compared with generalized predictive control solutions.

  • PDF

영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계 (Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC))

  • 박효성;이영일
    • 전력전자학회논문지
    • /
    • 제19권3호
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.