Only about 10% of selected equipment in nuclear power plants are monitored by wiring to address failures or problems caused by vibration. The purpose is primarily for preventive maintenance, not for predictive maintenance. This paper shows that vibration monitoring and diagnosis using Industrial 4.0 enables the complete predictive maintenance for all vibrating equipments in nuclear power plants with the convergence of internet of things; wireless technology, big data through periodic collection and artificial intelligence. Predictive maintenance using wireless technology is possible in all areas of nuclear power plants and in all systems, but it should satisfy regulatory guides on electromagnetic interference and cyber security.
발전회사는 설비 신뢰성과 이용율 저하없이 운영 및 정비비용을 낮추라는 요구를 받고 있다. 설비 운영자는 이러한 요구사항에 부합하기 위하여 현재의 정비기술에 대하여 다시 평가를 하고 있다. 정비비용을 낮추고 효율적인 운영 기간을 늘리기 위하여 설비의 최적 운영상태를 확인할 수 있는 비파괴기술을 이용하여 예측정비 기법을 적용할 수 있다. 예측정비 프로그램에는 내부운영 프로그램과 외부프로그램 그리고 혼용 프로그램이 있으며, 현명한 신뢰 (smart thrust)개념을 사용하면 예측정비 프로그램을 성공적으로 적용할 수 있다.
해양 운송 산업은 특성상 항공 및 철도 등의 다른 운송 산업보다 비교적 늦게 신기술이 적용되는 산업이다. 현재 대부분의 선박은 기계장치 및 시스템에 문제가 발생하거나 운용 시간 기반으로 정비를 하는 사후 정비(Corrective Maintenance, CM)와 예방 정비(Preventive Maintenance, PM)에 속하는 시간 기반 정비(TBM, Time Based Maintenance)가 적용되고 있다. 그러나 높은 유지보수 비용이 요구되고, 육상의 즉각적인 지원이 어려우며, 선박이 멈추면 즉시 위험에 노출되는 해양 환경에서 운영되는 선박에서 과도한 단순 정비로 인한 인력과 비용 낭비, 예측되지 못한 고장 및 결함으로 유발되는 사고 등으로 인해 운용 효율화 측면에서 기존 정비법에 대한 한계점이 문제시 되고 있다. 예지 정비(Predictive Maintenance, PdM)는 진보된 기술로 기계의 상태 및 성능을 모니터링하여 고장시기를 예측하여 정비하는 방법으로 핵심 기계장치가 항상 최상의 작동 상태를 효율적으로 유지할 수 있도록 한다. 본 논문은 해양 환경에서 PdM의 적용성에 중점을 둔 해양 예지 정비(MPdM, Maritime Predictive Maintenance)에 대해 고안하였으며, 제시된 MPdM은 지리적 고립과 극한 해양 상황 등 해양 운송 산업의 특수한 환경을 고려하여 설계되었다. 본 논문은 선진 미래 해양 운송을 가능하게 하는 MPdM이라는 개념과 그 필요성을 제안한다.
The time delay in servo control on LonWorks/IP Virtual Device Network (VDN) is highly stochastic in nature. LonWorks/IP VDN induced time delay deteriorates the performance and stability of the real-time distributed control system and hinders an effective preventive and predictive maintenance. Especially in real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. In order to guarantee the stability and performance of the system for effective preventive and predictive maintenance, LonWorks/IP VDN induced time delay needs to be predicted and compensated for. In this paper position control simulation of DC servo motor using Zero Phase Error Tracking Controller (ZPETC) as a feedforward controller, and Internal Model Controllers (IMC) based on Smith predictor with disturbance observer as a feedback controller is performed. The validity of the proposed control scheme is demonstrated by comparing the IMC based on Smith predictor with disturbance observer.
International journal of advanced smart convergence
/
제12권3호
/
pp.221-232
/
2023
Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational reliability of the ICT/Cold-Chain Unmanned Storage, a predictive maintenance system was implemented based on the LSTM model. In this paper, a server for data management, such as collection and monitoring, and an analysis server that notifies the monitoring server through data-based failure and defect analysis are separately distinguished. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on RabbitMQ, loading data in an InMemory method using Redis, and managing snapshot data DB in real time. The predictive maintenance platform can contribute to securing reliability by identifying potential failures and defects that may occur in the operation of the ICT/Cold-Chain Unmanned Storage in the future.
International Journal of Computer Science & Network Security
/
제24권1호
/
pp.215-225
/
2024
Predictive maintenance has been considered fundamental in the industrial applications in the last few years. It contributes to improve reliability, availability, and maintainability of the systems and to avoid breakdowns. These breakdowns could potentially lead to system shutdowns and to decrease the production efficiency of the manufacturing plants. The present article aims to study how predictive maintenance could be planed into the production scheduling, through a systematic review of literature. . The review includes the research articles published in international journals indexed in the Scopus database. 165 research articles were included in the search using #predictive maintenance# AND #production scheduling#. Press articles, conference and non-English papers are not considered in this study. After careful evaluation of each study for its purpose and scope, 50 research articles are selected for this review by following the 2020 Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA) statement. A benchmarking of predictive maintenance methods was used to understand the parameters that contributed to improve the production scheduling. The results of the comparative analysis highlight that artificial intelligence is a promising tool to anticipate breakdowns. An additional impression of this study is that each equipment has its own parameters that have to be collected, monitored and analyzed.
Recently, due to the expansion of the logistics industry, demand for logistics automation equipment is increasing. The modern logistics industry is a high-tech industry that combines various technologies. In general, as various technologies are grafted, the complexity of the system increases, and the occurrence rate of defects and failures also increases. As such, it is time for a predictive maintenance model specialized for logistics automation equipment. In this paper, in order to secure the operational safety and reliability of the parcel loading system, a predictive maintenance platform was implemented based on the Naive Bayes-LSTM(Long Short Term Memory) model. The predictive maintenance platform presented in this paper works by collecting data and receiving data based on a RabbitMQ, loading data in an InMemory method using a Redis, and managing snapshot DB in real time. Also, in this paper, as a verification of the Naive Bayes-LSTM predictive maintenance platform, the function of measuring the time for data collection/storage/processing and determining outliers/normal values was confirmed. The predictive maintenance platform can contribute to securing reliability and safety by identifying potential failures and defects that may occur in the operation of the parcel loading system in the future.
The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.
A data base design framework for predictive a preventive-maintenance system is presented in this paper in order to effectively control machines and reduce accident rates in the workplace. The data base is designed to meet general management requirements to evaluate different maintenance strategies. There are seven data files: the equipment list maintenace pesonnel, maintenance history, maintenance specification, spare part, maintenance equipment, and maintenance schedules. Each data base file has several record based upon data acquisition.
In this paper, a predictive maintenance of the robot trouble using the machine learning method, so called MT(Mahalanobis Taguchi), was studied. Especially, 'MD(Mahalanobis Distance)' was used to compare the robot arm motion difference between before the maintenance(bearing change) and after the maintenance. 6-axies vibration sensor was used to detect the vibration sensing during the motion of the robot arm. The results of the comparison, MD value of the arm motions of the after the maintenance(bearing change) was much lower and stable compared to MD value of the arm motions of the before the maintenance. MD value well distinguished the fine difference of the arm vibration of the robot. The superior performance of the MT method applied to the prediction of the robot trouble was verified by this experiments.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.