• Title/Summary/Keyword: Predictive height

Search Result 85, Processing Time 0.03 seconds

Analysis of Factors Related to Neurological Deficit in Thoracolumbar Fractures

  • Chung, Joon-Ho;Yoon, Seung-Hwan;Park, Hyung-Chun;Park, Chong-Oon;Kim, Eun-Young;Ha, Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Objective : The purpose of this study is to determine the factors that have effects on the neurological deficit in the patients with thoracolumbar fracture. Methods : Forty-eight patients were included. Cause of injury, type of injury, time interval, combined injury, kyphotic angle, spinal canal compromise, sagittal diameter, the most narrow sagittal diameter, transverse diameter, the most narrow transverse diameter, and remained height of vertebra body were concerned as the factors. The patients with American Spinal Injury Association[ASIA] impairment scale grade A to D were considered as having neurology while others with ASIA grade E were considered to be without neurology. The patients with ASIA grade A were classified to paraplegia group and the patients with ASIA grade B to E were not thought to be paraplegia. Statistical analysis for these groups were performed. Results : Spinal canal compromise [P<0.001] have correlation with neurological deficit. The most narrow sagittal diameter was smaller in the group with deficit than that in the group without deficit [P<0.004]. Also, combined injury have correlation with neurology [P=0.028]. Spinal canal compromise [P<0.001], sagittal diameter [P=0.032], the most narrow sagittal diameter [P=0.025], and Denis type [P<0.001] also have correlation with paraplegia. Conclusion : The factors of percentage of spinal canal compromise, the most narrow sagittal diameter, and combined injury are predictive of neurological deficit. The patients with paraplegia may be predicted by the factors such as type of injury, spinal canal compromise, sagittal diameter, the most narrow sagittal diameter, and Denis type.

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.18 no.6
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

Prevalence of Disc Degeneration in Asymptomatic Korean Subjects. Part 3 : Cervical and Lumbar Relationship

  • Kim, Sang Jin;Lee, Tae Hoon;Yi, Seong
    • Journal of Korean Neurosurgical Society
    • /
    • v.53 no.3
    • /
    • pp.167-173
    • /
    • 2013
  • Objective : There are many cases in which degenerative changes are prevalent in both the cervical and lumbar spine, and the relation between both spinal degenerative findings of MRI is controversial. The authors analyzed the prevalence of abnormal findings on MRI, and suggested a model to explain the relationship between cervical and lumbar disc in asymptomatic Korean subjects. Methods : We performed 3 T MRI sagittal scans on 102 asymptomatic subjects (50 men and 52 women) who visited our hospital between the ages of 14 and 82 years (mean age 46.3 years). Scores pertaining to herniation (HN), annular fissure (AF), and nucleus degeneration (ND) were analyzed. The total scores for the cervical and lumbar spine were analyzed using correlation coefficients and multiple linear regression with various predictive parameters, including weight, height, sex, age, smoking, occupation, and sedentary fashion. Results : The correlation coefficients of HN, AF, and ND were 0.44, 0.50, and 0.59, respectively. We made the best model for relationship by using multiple linear regression. Conclusion : The results of the current study showed that there was a close relationship between the cervical score (CS) and lumbar score (LS). In addition, the correlation between CS and LS, as well as the LS value itself, can be altered by other explanatory variables. Although not absolute, there was also a linear relationship between degenerative changes of the cervical and lumbar spine. Based on these results, it can be inferred that degenerative changes of the lumbar spine will be useful in predicting the degree of cervical spine degeneration in an actual clinical setting.

Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks (에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발)

  • Kim Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

Performance Assessment of Monthly Ensemble Prediction Data Based on Improvement of Climate Prediction System at KMA (기상청 기후예측시스템 개선에 따른 월별 앙상블 예측자료 성능평가)

  • Ham, Hyunjun;Lee, Sang-Min;Hyun, Yu-Kyug;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.149-164
    • /
    • 2019
  • The purpose of this study is to introduce the improvement of current operational climate prediction system of KMA and to compare previous and improved that. Whereas the previous system is based on GloSea5GA3, the improved one is built on GloSea5GC2. GloSea5GC2 is a fully coupled global climate model with an atmosphere, ocean, sea-ice and land components through the coupler OASIS. This is comprised of component configurations Global Atmosphere 6.0 (GA6.0), Global Land 6.0 (GL6.0), Global Ocean 5.0 (GO5.0) and Global Sea Ice 6.0 (GSI6.0). The compositions have improved sea-ice parameters over the previous model. The model resolution is N216L85 (~60 km in mid-latitudes) in the atmosphere and ORCA0.25L75 ($0.25^{\circ}$ on a tri-polar grid) in the ocean. In this research, the predictability of each system is evaluated using by RMSE, Correlation and MSSS, and the variables are 500 hPa geopotential height (h500), 850 hPa temperature (t850) and Sea surface temperature (SST). A predictive performance shows that GloSea5GC2 is better than GloSea5GA3. For example, the RMSE of h500 of 1-month forecast is decreased from 23.89 gpm to 22.21 gpm in East Asia. For Nino3.4 area of SST, the improvements to GloSeaGC2 result in a decrease in RMSE, which become apparent over time. It can be concluded that GloSea5GC2 has a great performance for seasonal prediction.

Comparison of data mining algorithms for sex determination based on mastoid process measurements using cone-beam computed tomography

  • Farhadian, Maryam;Salemi, Fatemeh;Shokri, Abbas;Safi, Yaser;Rahimpanah, Shahin
    • Imaging Science in Dentistry
    • /
    • v.50 no.4
    • /
    • pp.323-330
    • /
    • 2020
  • Purpose: The mastoid region is ideal for studying sexual dimorphism due to its anatomical position at the base of the skull. This study aimed to determine sex in the Iranian population based on measurements of the mastoid process using different data mining algorithms. Materials and Methods: This retrospective study was conducted on 190 3-dimensional cone-beam computed tomographic (CBCT) images of 105 women and 85 men between the ages of 18 and 70 years. On each CBCT scan, the following 9 landmarks were measured: the distance between the porion and the mastoidale; the mastoid length, height, and width; the distance between the mastoidale and the mastoid incision; the intermastoid distance (IMD); the distance between the lowest point of the mastoid triangle and the most prominent convex surface of the mastoid (MF); the distance between the most prominent convex mastoid point (IMSLD); and the intersecting angle drawn from the most prominent right and left mastoid point (MMCA). Several predictive models were constructed and their accuracy was compared using cross-validation. Results: The results of the t-test revealed a statistically significant difference between the sexes in all variables except MF and MMCA. The random forest model, with an accuracy of 97.0%, had the best performance in predicting sex. The IMSLD and IMD made the largest contributions to predicting sex, while the MMCA variable had the least significant role. Conclusion: These results show the possibility of developing an accurate tool using data mining algorithms for sex determination in the forensic framework.

Analysis of the Recall Demand Pattern of Imported Cars and Application of ARIMA Demand Forecasting Model (수입자동차 리콜 수요패턴 분석과 ARIMA 수요 예측모형의 적용)

  • Jeong, Sangcheon;Park, Sohyun;Kim, Seungchul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.93-106
    • /
    • 2020
  • This research explores how imported automobile companies can develop their strategies to improve the outcome of their recalls. For this, the researchers analyzed patterns of recall demand, classified recall types based on the demand patterns and examined response strategies, considering plans on how to procure parts and induce customers to visit workshops, recall execution capacity and costs. As a result, recalls are classified into four types: U-type, reverse U-type, L- type and reverse L-type. Also, as determinants of the types, the following factors are further categorized into four types and 12 sub-types of recalls: the height of maximum demand, which indicates the volatility of recall demand; the number of peaks, which are the patterns of demand variations; and the tail length of the demand curve, which indicates the speed of recalls. The classification resulted in the following: L-type, or customer-driven recall, is the most common type of recalls, taking up 25 out of the total 36 cases, followed by five U-type, four reverse L-type, and two reverse U-type cases. Prior studies show that the types of recalls are determined by factors influencing recall execution rates: severity, the number of cars to be recalled, recall execution rate, government policies, time since model launch, and recall costs, etc. As a component demand forecast model for automobile recalls, this study estimated the ARIMA model. ARIMA models were shown in three models: ARIMA (1,0,0), ARIMA (0,0,1) and ARIMA (0,0,0). These all three ARIMA models appear to be significant for all recall patterns, indicating that the ARIMA model is very valid as a predictive model for car recall patterns. Based on the classification of recall types, we drew some strategic implications for recall response according to types of recalls. The conclusion section of this research suggests the implications for several aspects: how to improve the recall outcome (execution rate), customer satisfaction, brand image, recall costs, and response to the regulatory authority.

Canonical correlation between body information and lipid-profile: A study on the National Health Insurance Big Data in Korea

  • Jo, Han-Gue;Kang, Young-Heung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.201-208
    • /
    • 2021
  • This study aims to provide the relevant basis upon which prediction of dyslipidemia should be made based on body information. Using the National Health Insurance big data (3,312,971 people) canonical correlation analysis was performed between body information and lipid-profile. Body information included age, height, weight and waist circumference, while the lipid-profile included total cholesterol, triglycerides, HDL cholesterol and LDL cholesterol. As a result, when the waist circumference and the weight are large, triglycerides increase and HDL cholesterol level decreases. In terms of age, weight, waist circumference, and HDL cholesterol, the canonical variates (the degree of influence) were significantly different according to sex. In particular, the canonical variate was dramatically changed around the forties and fifties in women in terms of weight, waist circumference, and HDL cholesterol. The canonical correlation results of the health care big data presented in this study will help construct a predictive model that can evaluate an individual's health status based on body information that can be easily measured in a non-invasive manner.

Comparison of CT Exposure Dose Prediction Models Using Machine Learning-based Body Measurement Information (머신러닝 기반 신체 계측정보를 이용한 CT 피폭선량 예측모델 비교)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.43 no.6
    • /
    • pp.503-509
    • /
    • 2020
  • This study aims to develop a patient-specific radiation exposure dose prediction model based on anthropometric data that can be easily measurable during CT examination, and to be used as basic data for DRL setting and radiation dose management system in the future. In addition, among the machine learning algorithms, the most suitable model for predicting exposure doses is presented. The data used in this study were chest CT scan data, and a data set was constructed based on the data including the patient's anthropometric data. In the pre-processing and sample selection of the data, out of the total number of samples of 250 samples, only chest CT scans were performed without using a contrast agent, and 110 samples including height and weight variables were extracted. Of the 110 samples extracted, 66% was used as a training set, and the remaining 44% were used as a test set for verification. The exposure dose was predicted through random forest, linear regression analysis, and SVM algorithm using Orange version 3.26.0, an open software as a machine learning algorithm. Results Algorithm model prediction accuracy was R^2 0.840 for random forest, R^2 0.969 for linear regression analysis, and R^2 0.189 for SVM. As a result of verifying the prediction rate of the algorithm model, the random forest is the highest with R^2 0.986 of the random forest, R^2 0.973 of the linear regression analysis, and R^2 of 0.204 of the SVM, indicating that the model has the best predictive power.

Prediction of Stunting Among Under-5 Children in Rwanda Using Machine Learning Techniques

  • Similien Ndagijimana;Ignace Habimana Kabano;Emmanuel Masabo;Jean Marie Ntaganda
    • Journal of Preventive Medicine and Public Health
    • /
    • v.56 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • Objectives: Rwanda reported a stunting rate of 33% in 2020, decreasing from 38% in 2015; however, stunting remains an issue. Globally, child deaths from malnutrition stand at 45%. The best options for the early detection and treatment of stunting should be made a community policy priority, and health services remain an issue. Hence, this research aimed to develop a model for predicting stunting in Rwandan children. Methods: The Rwanda Demographic and Health Survey 2019-2020 was used as secondary data. Stratified 10-fold cross-validation was used, and different machine learning classifiers were trained to predict stunting status. The prediction models were compared using different metrics, and the best model was chosen. Results: The best model was developed with the gradient boosting classifier algorithm, with a training accuracy of 80.49% based on the performance indicators of several models. Based on a confusion matrix, the test accuracy, sensitivity, specificity, and F1 were calculated, yielding the model's ability to classify stunting cases correctly at 79.33%, identify stunted children accurately at 72.51%, and categorize non-stunted children correctly at 94.49%, with an area under the curve of 0.89. The model found that the mother's height, television, the child's age, province, mother's education, birth weight, and childbirth size were the most important predictors of stunting status. Conclusions: Therefore, machine-learning techniques may be used in Rwanda to construct an accurate model that can detect the early stages of stunting and offer the best predictive attributes to help prevent and control stunting in under five Rwandan children.