• Title/Summary/Keyword: Predictive Risk Model

Search Result 227, Processing Time 0.021 seconds

Crime Incident Prediction Model based on Bayesian Probability (베이지안 확률 기반 범죄위험지역 예측 모델 개발)

  • HEO, Sun-Young;KIM, Ju-Young;MOON, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.89-101
    • /
    • 2017
  • Crime occurs differently based on not only place locations and building uses but also the characteristics of the people who use the place and the spatial structures of the buildings and locations. Therefore, if spatial big data, which contain spatial and regional properties, can be utilized, proper crime prevention measures can be enacted. Recently, with the advent of big data and the revolutionary intelligent information era, predictive policing has emerged as a new paradigm for police activities. Based on 7420 actual crime incidents occurring over three years in a typical provincial city, "J city," this study identified the areas in which crimes occurred and predicted risky areas. Spatial regression analysis was performed using spatial big data about only physical and environmental variables. Based on the results, using the street width, average number of building floors, building coverage ratio, the type of use of the first floor (Type II neighborhood living facility, commercial facility, pleasure use, or residential use), this study established a Crime Incident Prediction Model (CIPM) based on Bayesian probability theory. As a result, it was found that the model was suitable for crime prediction because the overlap analysis with the actual crime areas and the receiver operating characteristic curve (Roc curve), which evaluated the accuracy of the model, showed an area under the curve (AUC) value of 0.8. It was also found that a block where the commercial and entertainment facilities were concentrated, a block where the number of building floors is high, and a block where the commercial, entertainment, residential facilities are mixed are high-risk areas. This study provides a meaningful step forward to the development of a crime prediction model, unlike previous studies that explored the spatial distribution of crime and the factors influencing crime occurrence.

A Cohort Study of Children and Adolescents Victims with Sexual Abuse in Korea and Their Initial Assessment Results (아동청소년 성폭력 피해자들을 위한 코호트 연구 : 코호트 구축과 초기 평가 결과)

  • Kim, Kyung-Yoon;Lee, Na-Hyun;Cheon, Keun-Ah;Song, Dong-Ho
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2019
  • Objectives : The goals of the study are how to establish the cohort systems for the children and adolescents victims with sexual abuse in Korea and to identify the risk and protective factors that influence mental health in child sexual abuse (CSA). This is initial assessment data based on the analysis of cohort variables for baseline evaluation of subjects. Methods : We constructed the cohort systems for CSA victims recruited by Seoul Sunflower Children Center, CSA victims protection center. The initial assessment data which consisted of demographic and psychological inventories of CSA victims and their parents/families, psychiatric diagnoses were the results of statistical analysis of 65 subjects under 19 years old for 3 years 7 months. Results : The initial data were followings : female participants, N=56; mean age, 11.6 (SD=4.5); the most sexual assault, molestation 71.8%; victims, family and acquaintance 87.1%; 61.5% of the subjects diagnosed with psychiatric disorder; 29.2% diagnosed with PTSD and 23.1% diagnosed with depression. Mean duration for abuse to report is 1.5 years. Mean score of IES-R-K, TSCYC-avoidant and CBCL-problematic behavior were increased above clinical cut-off. Conclusions : CSA victims tend to have high risks in mental health problem. The cohort study could provide the risk and protective factors of CSA in mental health, and construct the predictive model for mental illness in Korea.

Spontaneous Resolution Rate and Predictive Factors of Resolution in Children with Primary Vesicoureteral Reflux (소아에서 일차성 방광요관역류의 자연소실율 및 관련 인자)

  • Kang, Eun-Young;Kim, Min-Sun;Kwon, Keun-Sang;Park, Eun-Hye;Lee, Dae-Yeol
    • Childhood Kidney Diseases
    • /
    • v.11 no.1
    • /
    • pp.74-82
    • /
    • 2007
  • Purpose : To analyze the clinical characteristics, spontaneous resolution rate and predictive factors of resolution in children with primary vesicoureteral reflux(VUR). Methods : Between October 1991 and July 2003, 149 children diagnosed with primary VUR at Chonbuk National University Hospital were reviewed retrospectively. All of the patients were maintained on low-dose antibiotic prophylaxis and underwent radionuclide cystograms at 1 year intervals over 3 years after the initial diagnosis of VUR by voiding cystourethrogram was made. Results : The median time to resolution of VUR was 24 months and the total 3 year-cumulative resolution rate of VUR was 61.7%. The following variables were associated with resolution of VUR according to univariate analysis-; age<1 year, male gender, mild grade of reflux, unilateral reflux, congenital hydronephrosis as clinical presentation at time of diagnosis of VUR, absence of focal defects in the renal scan at diagnosis, absence of recurrent UTI, renal scars and small kidney during follow-up. After adjustment by Cox regression model, five variables remained as independent predictors of VUR resolution; age<1 yew, relative risk 1.77(P<0.05), VUR grade I+II 2.98(P<0.05), absence of renal scars 2.23(P<0.05), and absence of small kidney 5.20(P<0.01) during follow-up. Conclusion : In this study, spontaneous resolution rate of VUR, even high grade reflux, is high in infants during medical management, and it was related to age, reflux grade at diagnosis, absence of renal scars and small kidney during follow-up. Therefore early surgical intervention should be avoided and reserved for the selected groups.

  • PDF

Prediction of Changes in the Potential Distribution of a Waterfront Alien Plant, Paspalum distichum var. indutum, under Climate Change in the Korean Peninsula (한반도에서 기후변화에 따른 수변 외래식물인 털물참새피의 분포 변화 예측)

  • Cho, Kang-Hyun;Lee, Seung Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.3
    • /
    • pp.206-215
    • /
    • 2015
  • Predicting the changes in the potential distribution of invasive alien plants under climate change is an important and challenging task for the conservation of biodiversity and management of the ecosystems in streams and reservoirs. This study explored the effects of climate change on the potential future distribution of Paspalum distichum var. indutum in the Korean Peninsula. P. distichum var. indutum is an invasive grass species that has a profound economic and environmental impact in the waterfronts of freshwater ecosystems. The Maxent model was used to estimate the potential distribution of P. distichum var. indutum under current and future climates. A total of nineteen climatic variables of Worldclim 1.4 were used as current climatic data and future climatic data predicted by HadGEM2-AO with both RCP 2.6 and RCP 8.5 scenarios for 2050. The predicted current distribution of P. distichum var. indutum was almost matched with actual positioning data. Major environmental variables contributing to the potential distribution were precipitation of the warmest quarter, annual mean temperature and mean temperature of the coldest quarter. Our prediction results for 2050 showed an overall reduction in climatic suitability for P. distichum var. indutum in the current distribution area and its expansion to further inland and in a northerly direction. The predictive model used in this study appeared to be powerful for understanding the potential distribution, exploring the effects of climate change on the habitat changes and providing the effective management of the risk of biological invasion by alien plants.

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.

Predicting the Fetotoxicity of Drugs Using Machine Learning (기계학습 기반 약물의 태아 독성 예측 연구)

  • Myeonghyeon Jeong;Sunyong Yoo
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.490-497
    • /
    • 2023
  • Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.

Prediction of Life Expectancy for Terminally Ill Cancer Patients Based on Clinical Parameters (말기 암 환자에서 임상변수를 이용한 생존 기간 예측)

  • Yeom, Chang-Hwan;Choi, Youn-Seon;Hong, Young-Seon;Park, Yong-Gyu;Lee, Hye-Ree
    • Journal of Hospice and Palliative Care
    • /
    • v.5 no.2
    • /
    • pp.111-124
    • /
    • 2002
  • Purpose : Although the average life expectancy has increased due to advances in medicine, mortality due to cancer is on an increasing trend. Consequently, the number of terminally ill cancer patients is also on the rise. Predicting the survival period is an important issue in the treatment of terminally ill cancer patients since the choice of treatment would vary significantly by the patents, their families, and physicians according to the expected survival. Therefore, we investigated the prognostic factors for increased mortality risk in terminally ill cancer patients to help treat these patients by predicting the survival period. Methods : We investigated 31 clinical parameters in 157 terminally ill cancer patients admitted to in the Department of Family Medicine, National Health Insurance Corporation Ilsan Hospital between July 1, 2000 and August 31, 2001. We confirmed the patients' survival as of October 31, 2001 based on medical records and personal data. The survival rates and median survival times were estimated by the Kaplan-Meier method and Log-rank test was used to compare the differences between the survival rates according to each clinical parameter. Cox's proportional hazard model was used to determine the most predictive subset from the prognostic factors among many clinical parameters which affect the risk of death. We predicted the mean, median, the first quartile value and third quartile value of the expected lifetimes by Weibull proportional hazard regression model. Results : Out of 157 patients, 79 were male (50.3%). The mean age was $65.1{\pm}13.0$ years in males and was $64.3{\pm}13.7$ years in females. The most prevalent cancer was gastric cancer (36 patients, 22.9%), followed by lung cancer (27, 17.2%), and cervical cancer (20, 12.7%). The survival time decreased with to the following factors; mental change, anorexia, hypotension, poor performance status, leukocytosis, neutrophilia, elevated serum creatinine level, hypoalbuminemia, hyperbilirubinemia, elevated SGPT, prolonged prothrombin time (PT), prolonged activated partial thromboplastin time (aPTT), hyponatremia, and hyperkalemia. Among these factors, poor performance status, neutrophilia, prolonged PT and aPTT were significant prognostic factors of death risk in these patients according to the results of Cox's proportional hazard model. We predicted that the median life expectancy was 3.0 days when all of the above 4 factors were present, $5.7{\sim}8.2$ days when 3 of these 4 factors were present, $11.4{\sim}20.0$ days when 2 of the 4 were present, and $27.9{\sim}40.0$ when 1 of the 4 was present, and 77 days when none of these 4 factors were present. Conclusions : In terminally ill cancer patients, we found that the prognostic factors related to reduced survival time were poor performance status, neutrophilia, prolonged PT and prolonged am. The four prognostic factors enabled the prediction of life expectancy in terminally ill cancer patients.

  • PDF

An Empirical Study on Korean Stock Market using Firm Characteristic Model (한국주식시장에서 기업특성모형 적용에 관한 실증연구)

  • Kim, Soo-Kyung;Park, Jong-Hae;Byun, Young-Tae;Kim, Tae-Hyuk
    • Management & Information Systems Review
    • /
    • v.29 no.2
    • /
    • pp.1-25
    • /
    • 2010
  • This study attempted to empirically test the determinants of stock returns in Korean stock market applying multi-factor model proposed by Haugen and Baker(1996). Regression models were developed using 16 variables related to liquidity, risk, historical price, price level, and profitability as independent variables and 690 stock monthly returns as dependent variable. For the statistical analysis, the data were collected from the Kis Value database and the tests of forecasting power in this study minimized various possible bias discussed in the literature as possible. The statistical results indicated that: 1) Liquidity, one-month excess return, three-month excess return, PER, ROE, and volatility of total return affect stock returns simultaneously. 2) Liquidity, one-month excess return, three-month excess return, six-month excess return, PSR, PBR, ROE, and EPS have an antecedent influence on stock returns. Meanwhile, realized returns of decile portfolios increase in proportion to predicted returns. This results supported previous study by Haugen and Baker(1996) and indicated that firm-characteristic model can better predict stock returns than CAPM. 3) The firm-characteristic model has better predictive power than Fama-French three-factor model, which indicates that a portfolio constructed based on this model can achieve excess return. This study found that expected return factor models are accurate, which is consistent with other countries' results. There exists a surprising degree of commonality in the factors that are most important in determining the expected returns among different stocks.

  • PDF

Prediction of a hit drama with a pattern analysis on early viewing ratings (초기 시청시간 패턴 분석을 통한 대흥행 드라마 예측)

  • Nam, Kihwan;Seong, Nohyoon
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.33-49
    • /
    • 2018
  • The impact of TV Drama success on TV Rating and the channel promotion effectiveness is very high. The cultural and business impact has been also demonstrated through the Korean Wave. Therefore, the early prediction of the blockbuster success of TV Drama is very important from the strategic perspective of the media industry. Previous studies have tried to predict the audience ratings and success of drama based on various methods. However, most of the studies have made simple predictions using intuitive methods such as the main actor and time zone. These studies have limitations in predicting. In this study, we propose a model for predicting the popularity of drama by analyzing the customer's viewing pattern based on various theories. This is not only a theoretical contribution but also has a contribution from the practical point of view that can be used in actual broadcasting companies. In this study, we collected data of 280 TV mini-series dramas, broadcasted over the terrestrial channels for 10 years from 2003 to 2012. From the data, we selected the most highly ranked and the least highly ranked 45 TV drama and analyzed the viewing patterns of them by 11-step. The various assumptions and conditions for modeling are based on existing studies, or by the opinions of actual broadcasters and by data mining techniques. Then, we developed a prediction model by measuring the viewing-time distance (difference) using Euclidean and Correlation method, which is termed in our study similarity (the sum of distance). Through the similarity measure, we predicted the success of dramas from the viewer's initial viewing-time pattern distribution using 1~5 episodes. In order to confirm that the model is shaken according to the measurement method, various distance measurement methods were applied and the model was checked for its dryness. And when the model was established, we could make a more predictive model using a grid search. Furthermore, we classified the viewers who had watched TV drama more than 70% of the total airtime as the "passionate viewer" when a new drama is broadcasted. Then we compared the drama's passionate viewer percentage the most highly ranked and the least highly ranked dramas. So that we can determine the possibility of blockbuster TV mini-series. We find that the initial viewing-time pattern is the key factor for the prediction of blockbuster dramas. From our model, block-buster dramas were correctly classified with the 75.47% accuracy with the initial viewing-time pattern analysis. This paper shows high prediction rate while suggesting audience rating method different from existing ones. Currently, broadcasters rely heavily on some famous actors called so-called star systems, so they are in more severe competition than ever due to rising production costs of broadcasting programs, long-term recession, aggressive investment in comprehensive programming channels and large corporations. Everyone is in a financially difficult situation. The basic revenue model of these broadcasters is advertising, and the execution of advertising is based on audience rating as a basic index. In the drama, there is uncertainty in the drama market that it is difficult to forecast the demand due to the nature of the commodity, while the drama market has a high financial contribution in the success of various contents of the broadcasting company. Therefore, to minimize the risk of failure. Thus, by analyzing the distribution of the first-time viewing time, it can be a practical help to establish a response strategy (organization/ marketing/story change, etc.) of the related company. Also, in this paper, we found that the behavior of the audience is crucial to the success of the program. In this paper, we define TV viewing as a measure of how enthusiastically watching TV is watched. We can predict the success of the program successfully by calculating the loyalty of the customer with the hot blood. This way of calculating loyalty can also be used to calculate loyalty to various platforms. It can also be used for marketing programs such as highlights, script previews, making movies, characters, games, and other marketing projects.

Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics (빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축)

  • Jo, Nam-ok;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.33-56
    • /
    • 2016
  • Many researchers have focused on developing bankruptcy prediction models using modeling techniques, such as statistical methods including multiple discriminant analysis (MDA) and logit analysis or artificial intelligence techniques containing artificial neural networks (ANN), decision trees, and support vector machines (SVM), to secure enhanced performance. Most of the bankruptcy prediction models in academic studies have used financial ratios as main input variables. The bankruptcy of firms is associated with firm's financial states and the external economic situation. However, the inclusion of qualitative information, such as the economic atmosphere, has not been actively discussed despite the fact that exploiting only financial ratios has some drawbacks. Accounting information, such as financial ratios, is based on past data, and it is usually determined one year before bankruptcy. Thus, a time lag exists between the point of closing financial statements and the point of credit evaluation. In addition, financial ratios do not contain environmental factors, such as external economic situations. Therefore, using only financial ratios may be insufficient in constructing a bankruptcy prediction model, because they essentially reflect past corporate internal accounting information while neglecting recent information. Thus, qualitative information must be added to the conventional bankruptcy prediction model to supplement accounting information. Due to the lack of an analytic mechanism for obtaining and processing qualitative information from various information sources, previous studies have only used qualitative information. However, recently, big data analytics, such as text mining techniques, have been drawing much attention in academia and industry, with an increasing amount of unstructured text data available on the web. A few previous studies have sought to adopt big data analytics in business prediction modeling. Nevertheless, the use of qualitative information on the web for business prediction modeling is still deemed to be in the primary stage, restricted to limited applications, such as stock prediction and movie revenue prediction applications. Thus, it is necessary to apply big data analytics techniques, such as text mining, to various business prediction problems, including credit risk evaluation. Analytic methods are required for processing qualitative information represented in unstructured text form due to the complexity of managing and processing unstructured text data. This study proposes a bankruptcy prediction model for Korean small- and medium-sized construction firms using both quantitative information, such as financial ratios, and qualitative information acquired from economic news articles. The performance of the proposed method depends on how well information types are transformed from qualitative into quantitative information that is suitable for incorporating into the bankruptcy prediction model. We employ big data analytics techniques, especially text mining, as a mechanism for processing qualitative information. The sentiment index is provided at the industry level by extracting from a large amount of text data to quantify the external economic atmosphere represented in the media. The proposed method involves keyword-based sentiment analysis using a domain-specific sentiment lexicon to extract sentiment from economic news articles. The generated sentiment lexicon is designed to represent sentiment for the construction business by considering the relationship between the occurring term and the actual situation with respect to the economic condition of the industry rather than the inherent semantics of the term. The experimental results proved that incorporating qualitative information based on big data analytics into the traditional bankruptcy prediction model based on accounting information is effective for enhancing the predictive performance. The sentiment variable extracted from economic news articles had an impact on corporate bankruptcy. In particular, a negative sentiment variable improved the accuracy of corporate bankruptcy prediction because the corporate bankruptcy of construction firms is sensitive to poor economic conditions. The bankruptcy prediction model using qualitative information based on big data analytics contributes to the field, in that it reflects not only relatively recent information but also environmental factors, such as external economic conditions.