• Title/Summary/Keyword: Predictive Risk Model

Search Result 227, Processing Time 0.025 seconds

Landslide Risk Assessment of Cropland and Man-made Infrastructures using Bayesian Predictive Model (베이지안 예측모델을 활용한 농업 및 인공 인프라의 산사태 재해 위험 평가)

  • Al, Mamun;Jang, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.3
    • /
    • pp.87-103
    • /
    • 2020
  • The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.

Risk Factors Analysis and Quantitative Risk Assessment Model for Tunnel Construction Project (터널 건설 프로젝트 리스크 분석 및 리스크 정량화 모델 개발에 관한 연구)

  • Jeong, Seung-A;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.363-364
    • /
    • 2023
  • The tunnel construction projects is demanded more efficient risk management measures and loss forecasts to prepare for risk losses from an increase in the trend of tunnel construction. This study aims to analyze the risk factors that caused the loss of material in actual tunnel construction and to develop a quantified predictive loss model, based on the past loss record of tunnel construction projects.

  • PDF

Prediction of Health Care Cost Using the Hierarchical Condition Category Risk Adjustment Model (위계적 질환군 위험조정모델 기반 의료비용 예측)

  • Han, Ki Myoung;Ryu, Mi Kyung;Chun, Ki Hong
    • Health Policy and Management
    • /
    • v.27 no.2
    • /
    • pp.149-156
    • /
    • 2017
  • Background: This study was conducted to evaluate the performance of the Hierarchical Condition Category (HCC) model, identify potentially high-cost patients, and examine the effects of adding prior utilization to the risk model using Korean claims data. Methods: We incorporated 2 years of data from the National Health Insurance Services-National Sample Cohort. Five risk models were used to predict health expenditures: model 1 (age/sex groups), model 2 (the Center for Medicare and Medicaid Services-HCC with age/sex groups), model 3 (selected 54 HCCs with age/sex groups), model 4 (bed-days of care plus model 3), and model 5 (medication-days plus model 3). We evaluated model performance using $R^2$ at individual level, predictive positive value (PPV) of the top 5% of high-cost patients, and predictive ratio (PR) within subgroups. Results: The suitability of the model, including prior use, bed-days, and medication-days, was better than other models. $R^2$ values were 8%, 39%, 37%, 43%, and 57% with model 1, 2, 3, 4, and 5, respectively. After being removed the extreme values, the corresponding $R^2$ values were slightly improved in all models. PPVs were 16.4%, 25.2%, 25.1%, 33.8%, and 53.8%. Total expenditure was underpredicted for the highest expenditure group and overpredicted for the four other groups. PR had a tendency to decrease from younger group to older group in both female and male. Conclusion: The risk adjustment models are important in plan payment, reimbursement, profiling, and research. Combined prior use and diagnostic data are more powerful to predict health costs and to identify high-cost patients.

Predictive Bayesian Network Model Using Electronic Patient Records for Prevention of Hospital-Acquired Pressure Ulcers (전자의무기록을 이용한 욕창발생 예측 베이지안 네트워크 모델 개발)

  • Cho, In-Sook;Chung, Eun-Ja
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.3
    • /
    • pp.423-431
    • /
    • 2011
  • Purpose: The study was designed to determine the discriminating ability of a Bayesian network (BN) for predicting risk for pressure ulcers. Methods: Analysis was done using a retrospective cohort, nursing records representing 21,114 hospital days, 3,348 patients at risk for ulcers, admitted to the intensive care unit of a tertiary teaching hospital between January 2004 and January 2007. A BN model and two logistic regression (LR) versions, model-I and .II, were compared, varying the nature, number and quality of input variables. Classification competence and case coverage of the models were tested and compared using a threefold cross validation method. Results: Average incidence of ulcers was 6.12%. Of the two LR models, model-I demonstrated better indexes of statistical model fits. The BN model had a sensitivity of 81.95%, specificity of 75.63%, positive and negative predictive values of 35.62% and 96.22% respectively. The area under the receiver operating characteristic (AUROC) was 85.01% implying moderate to good overall performance, which was similar to LR model-I. However, regarding case coverage, the BN model was 100% compared to 15.88% of LR. Conclusion: Discriminating ability of the BN model was found to be acceptable and case coverage proved to be excellent for clinical use.

A Predictive Model of Turnover among Nurses in a Tertiary Hospital: Decision Tree Analysis (의사결정나무 분석기법을 이용한 상급종합병원 간호사의 이직 예측모형 구축)

  • Kang, Kyung Ok;Han, Nara;Jeong, Jeong A;Choi, Young Eun;Park Jin Kyung;Jeong, Seok Hee
    • Journal of East-West Nursing Research
    • /
    • v.29 no.1
    • /
    • pp.68-77
    • /
    • 2023
  • Purpose: The purposes of this study were to develop a predictive model and evaluate this model of turnover in hospital nurses. Methods: Participants were 1,565 nurses from a tertiary hospital in South Korea. Descriptive statistics and a decision-tree analysis were performed using the SPSS WIN 23.0 program. Results: The turnover groups were presented in eleven different pathways by decision tree analysis. There were three high-risk groups with a higher turnover rate than the average, and eight low-risk groups with a lower turnover rate. Among them, two low-risk groups had a 0% turnover rate. The groups were classified according to general characteristics such as position, period of temporary position, clinical career at last working unit, total clinical career, and period of leave of absence. The accuracy of the model was 83.2%, sensitivity 63.7%, and specificity 98.1%. Conclusion: This predictive model of turnover may be used to screen the turnover risk groups and contribute for decreasing the turnover of hospital nurses in South Korea.

The Development of Risk Predictive Model for Air-borne Lead in Blood (대기 중 납의 RISK예측모형 개발)

  • 김종석
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.3
    • /
    • pp.46-51
    • /
    • 1993
  • In order to survery the risk of air-borne lead to human, the relation between air-borne lead level and blood lead level was examined by using of the kinetic model and statistical model. The results of this survey were as follows: 1. The pathways of lead intake were food and water, mainly. 2. Though blood lead level of Korean urbanire was higher than that of American or Japanese, it was not so severe as to influence human health. 3. The lead content in food and water was high, and so it is needed to confirm the cause of high content was whether second contamination by air pollution or not.

  • PDF

Prediction Model for the Risk of Scapular Winging in Young Women Based on the Decision Tree

  • Gwak, Gyeong-tae;Ahn, Sun-hee;Kim, Jun-hee;Weon, Young-soo;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.27 no.2
    • /
    • pp.140-148
    • /
    • 2020
  • Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.

Development of a Predictive Model and Risk Assessment for the Growth of Staphylococcus aureus in Ham Rice Balls Mixed with Different Sauces (소스 종류를 달리한 햄 주먹밥에서의 Staphylococcus aureus 성장예측모델 개발 및 위해평가)

  • Oh, Sujin;Yeo, Seoungsoon;Kim, Misook
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.1
    • /
    • pp.30-43
    • /
    • 2019
  • This study compared the predictive models for the growth kinetics of Staphylococcus aureus in ham rice balls. In addition, a semi-quantitative risk assessment of S. aureus on ham rice balls was conducted using FDA-iRISK 4.0. The rice was rounded with chopped ham, which was mixed with mayonnaise (SHM), soy sauce (SHS), or gochujang (SHG), and was contaminated artificially with approximately $2.5{\log}\;CFU{\cdot}g^{-1}$ of S. aureus. The inoculated rice balls were then stored at $7^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$, and the number of viable S. aureus was counted. The lag phases duration (LPD) and maximum specific growth rate (SGR) were calculated using a Baranyi model as a primary model. The growth parameters were analyzed using the polynomial equation as a function of temperature. The LPD values of S. aureus decreased with increasing temperature in SHS and SHG. On the other hand, those in SHM did not show any trend with increasing temperature. The SGR positively correlated with temperature. Equations for LPD and SGR were developed and validated using $R^2$ values, which ranged from 0.9929 to 0.9999. In addition, the total DALYs (disability adjusted life years) per year in the ham rice balls with soy sauce and gochujang was greater than mayonnaise. These results could be used to calculate the expected number of illnesses, and set the hazard management method taking the DALY value for public health into account.

A Logistic Model Including Risk Factors for Lymph Node Metastasis Can Improve the Accuracy of Magnetic Resonance Imaging Diagnosis of Rectal Cancer

  • Ogawa, Shimpei;Itabashi, Michio;Hirosawa, Tomoichiro;Hashimoto, Takuzo;Bamba, Yoshiko;Kameoka, Shingo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.707-712
    • /
    • 2015
  • Background: To evaluate use of magnetic resonance imaging (MRI) and a logistic model including risk factors for lymph node metastasis for improved diagnosis. Materials and Methods: The subjects were 176 patients with rectal cancer who underwent preoperative MRI. The longest lymph node diameter was measured and a cut-off value for positive lymph node metastasis was established based on a receiver operating characteristic (ROC) curve. A logistic model was constructed based on MRI findings and risk factors for lymph node metastasis extracted from logistic-regression analysis. The diagnostic capabilities of MRI alone and those of the logistic model were compared using the area under the curve (AUC) of the ROC curve. Results: The cut-off value was a diameter of 5.47 mm. Diagnosis using MRI had an accuracy of 65.9%, sensitivity 73.5%, specificity 61.3%, positive predictive value (PPV) 62.9%, and negative predictive value (NPV) 72.2% [AUC: 0.6739 (95%CI: 0.6016-0.7388)]. Age (<59) (p=0.0163), pT (T3+T4) (p=0.0001), and BMI (<23.5) (p=0.0003) were extracted as independent risk factors for lymph node metastasis. Diagnosis using MRI with the logistic model had an accuracy of 75.0%, sensitivity 72.3%, specificity 77.4%, PPV 74.1%, and NPV 75.8% [AUC: 0.7853 (95%CI: 0.7098-0.8454)], showing a significantly improved diagnostic capacity using the logistic model (p=0.0002). Conclusions: A logistic model including risk factors for lymph node metastasis can improve the accuracy of MRI diagnosis of rectal cancer.

Construction of a Novel Mitochondria-Associated Gene Model for Assessing ESCC Immune Microenvironment and Predicting Survival

  • Xiu Wang;Zhenhu Zhang;Yamin Shi;Wenjuan Zhang;Chongyi Su;Dong Wang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1164-1177
    • /
    • 2024
  • Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene co-expression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.