Journal of The Geomorphological Association of Korea
/
v.27
no.3
/
pp.87-103
/
2020
The purpose of this study is to evaluate the risk of cropland and man-made infrastructures in a landslide-prone area using a GIS-based method. To achieve this goal, a landslide inventory map was prepared based on aerial photograph analysis as well as field observations. A total of 550 landslides have been counted in the entire study area. For model analysis and validation, extracted landslides were randomly selected and divided into two groups. The landslide causative factors such as slope, aspect, curvature, topographic wetness index, elevation, forest type, forest crown density, geology, land-use, soil drainage, and soil texture were used in the analysis. Moreover, to identify the correlation between landslides and causative factors, pixels were divided into several classes and frequency ratio was also extracted. A landslide susceptibility map was constructed using a bayesian predictive model (BPM) based on the entire events. In the cross validation process, the landslide susceptibility map as well as observation data were plotted with a receiver operating characteristic (ROC) curve then the area under the curve (AUC) was calculated and tried to extract a success rate curve. The results showed that, the BPM produced 85.8% accuracy. We believed that the model was acceptable for the landslide susceptibility analysis of the study area. In addition, for risk assessment, monetary value (local) and vulnerability scale were added for each social thematic data layers, which were then converted into US dollar considering landslide occurrence time. Moreover, the total number of the study area pixels and predictive landslide affected pixels were considered for making a probability table. Matching with the affected number, 5,000 landslide pixels were assumed to run for final calculation. Based on the result, cropland showed the estimated total risk as US $ 35.4 million and man-made infrastructure risk amounted to US $ 39.3 million.
Proceedings of the Korean Institute of Building Construction Conference
/
2023.05a
/
pp.363-364
/
2023
The tunnel construction projects is demanded more efficient risk management measures and loss forecasts to prepare for risk losses from an increase in the trend of tunnel construction. This study aims to analyze the risk factors that caused the loss of material in actual tunnel construction and to develop a quantified predictive loss model, based on the past loss record of tunnel construction projects.
Background: This study was conducted to evaluate the performance of the Hierarchical Condition Category (HCC) model, identify potentially high-cost patients, and examine the effects of adding prior utilization to the risk model using Korean claims data. Methods: We incorporated 2 years of data from the National Health Insurance Services-National Sample Cohort. Five risk models were used to predict health expenditures: model 1 (age/sex groups), model 2 (the Center for Medicare and Medicaid Services-HCC with age/sex groups), model 3 (selected 54 HCCs with age/sex groups), model 4 (bed-days of care plus model 3), and model 5 (medication-days plus model 3). We evaluated model performance using $R^2$ at individual level, predictive positive value (PPV) of the top 5% of high-cost patients, and predictive ratio (PR) within subgroups. Results: The suitability of the model, including prior use, bed-days, and medication-days, was better than other models. $R^2$ values were 8%, 39%, 37%, 43%, and 57% with model 1, 2, 3, 4, and 5, respectively. After being removed the extreme values, the corresponding $R^2$ values were slightly improved in all models. PPVs were 16.4%, 25.2%, 25.1%, 33.8%, and 53.8%. Total expenditure was underpredicted for the highest expenditure group and overpredicted for the four other groups. PR had a tendency to decrease from younger group to older group in both female and male. Conclusion: The risk adjustment models are important in plan payment, reimbursement, profiling, and research. Combined prior use and diagnostic data are more powerful to predict health costs and to identify high-cost patients.
Purpose: The study was designed to determine the discriminating ability of a Bayesian network (BN) for predicting risk for pressure ulcers. Methods: Analysis was done using a retrospective cohort, nursing records representing 21,114 hospital days, 3,348 patients at risk for ulcers, admitted to the intensive care unit of a tertiary teaching hospital between January 2004 and January 2007. A BN model and two logistic regression (LR) versions, model-I and .II, were compared, varying the nature, number and quality of input variables. Classification competence and case coverage of the models were tested and compared using a threefold cross validation method. Results: Average incidence of ulcers was 6.12%. Of the two LR models, model-I demonstrated better indexes of statistical model fits. The BN model had a sensitivity of 81.95%, specificity of 75.63%, positive and negative predictive values of 35.62% and 96.22% respectively. The area under the receiver operating characteristic (AUROC) was 85.01% implying moderate to good overall performance, which was similar to LR model-I. However, regarding case coverage, the BN model was 100% compared to 15.88% of LR. Conclusion: Discriminating ability of the BN model was found to be acceptable and case coverage proved to be excellent for clinical use.
Kang, Kyung Ok;Han, Nara;Jeong, Jeong A;Choi, Young Eun;Park Jin Kyung;Jeong, Seok Hee
Journal of East-West Nursing Research
/
v.29
no.1
/
pp.68-77
/
2023
Purpose: The purposes of this study were to develop a predictive model and evaluate this model of turnover in hospital nurses. Methods: Participants were 1,565 nurses from a tertiary hospital in South Korea. Descriptive statistics and a decision-tree analysis were performed using the SPSS WIN 23.0 program. Results: The turnover groups were presented in eleven different pathways by decision tree analysis. There were three high-risk groups with a higher turnover rate than the average, and eight low-risk groups with a lower turnover rate. Among them, two low-risk groups had a 0% turnover rate. The groups were classified according to general characteristics such as position, period of temporary position, clinical career at last working unit, total clinical career, and period of leave of absence. The accuracy of the model was 83.2%, sensitivity 63.7%, and specificity 98.1%. Conclusion: This predictive model of turnover may be used to screen the turnover risk groups and contribute for decreasing the turnover of hospital nurses in South Korea.
In order to survery the risk of air-borne lead to human, the relation between air-borne lead level and blood lead level was examined by using of the kinetic model and statistical model. The results of this survey were as follows: 1. The pathways of lead intake were food and water, mainly. 2. Though blood lead level of Korean urbanire was higher than that of American or Japanese, it was not so severe as to influence human health. 3. The lead content in food and water was high, and so it is needed to confirm the cause of high content was whether second contamination by air pollution or not.
Background: Scapular winging (SW) could be caused by tightness or weakness of the periscapular muscles. Although data mining techniques are useful in classifying or predicting risk of musculoskeletal disorder, predictive models for risk of musculoskeletal disorder using the results of clinical test or quantitative data are scarce. Objects: This study aimed to (1) investigate the difference between young women with and without SW, (2) establish a predictive model for presence of SW, and (3) determine the cutoff value of each variable for predicting the risk of SW using the decision tree method. Methods: Fifty young female subjects participated in this study. To classify the presence of SW as the outcome variable, scapular protractor strength, elbow flexor strength, shoulder internal rotation, and whether the scapula is in the dominant or nondominant side were determined. Results: The classification tree selected scapular protractor strength, shoulder internal rotation range of motion, and whether the scapula is in the dominant or nondominant side as predictor variables. The classification tree model correctly classified 78.79% (p = 0.02) of the training data set. The accuracy obtained by the classification tree on the test data set was 82.35% (p = 0.04). Conclusion: The classification tree showed acceptable accuracy (82.35%) and high specificity (95.65%) but low sensitivity (54.55%). Based on the predictive model in this study, we suggested that 20% of body weight in scapular protractor strength is a meaningful cutoff value for presence of SW.
This study compared the predictive models for the growth kinetics of Staphylococcus aureus in ham rice balls. In addition, a semi-quantitative risk assessment of S. aureus on ham rice balls was conducted using FDA-iRISK 4.0. The rice was rounded with chopped ham, which was mixed with mayonnaise (SHM), soy sauce (SHS), or gochujang (SHG), and was contaminated artificially with approximately $2.5{\log}\;CFU{\cdot}g^{-1}$ of S. aureus. The inoculated rice balls were then stored at $7^{\circ}C$, $15^{\circ}C$, and $25^{\circ}C$, and the number of viable S. aureus was counted. The lag phases duration (LPD) and maximum specific growth rate (SGR) were calculated using a Baranyi model as a primary model. The growth parameters were analyzed using the polynomial equation as a function of temperature. The LPD values of S. aureus decreased with increasing temperature in SHS and SHG. On the other hand, those in SHM did not show any trend with increasing temperature. The SGR positively correlated with temperature. Equations for LPD and SGR were developed and validated using $R^2$ values, which ranged from 0.9929 to 0.9999. In addition, the total DALYs (disability adjusted life years) per year in the ham rice balls with soy sauce and gochujang was greater than mayonnaise. These results could be used to calculate the expected number of illnesses, and set the hazard management method taking the DALY value for public health into account.
Background: To evaluate use of magnetic resonance imaging (MRI) and a logistic model including risk factors for lymph node metastasis for improved diagnosis. Materials and Methods: The subjects were 176 patients with rectal cancer who underwent preoperative MRI. The longest lymph node diameter was measured and a cut-off value for positive lymph node metastasis was established based on a receiver operating characteristic (ROC) curve. A logistic model was constructed based on MRI findings and risk factors for lymph node metastasis extracted from logistic-regression analysis. The diagnostic capabilities of MRI alone and those of the logistic model were compared using the area under the curve (AUC) of the ROC curve. Results: The cut-off value was a diameter of 5.47 mm. Diagnosis using MRI had an accuracy of 65.9%, sensitivity 73.5%, specificity 61.3%, positive predictive value (PPV) 62.9%, and negative predictive value (NPV) 72.2% [AUC: 0.6739 (95%CI: 0.6016-0.7388)]. Age (<59) (p=0.0163), pT (T3+T4) (p=0.0001), and BMI (<23.5) (p=0.0003) were extracted as independent risk factors for lymph node metastasis. Diagnosis using MRI with the logistic model had an accuracy of 75.0%, sensitivity 72.3%, specificity 77.4%, PPV 74.1%, and NPV 75.8% [AUC: 0.7853 (95%CI: 0.7098-0.8454)], showing a significantly improved diagnostic capacity using the logistic model (p=0.0002). Conclusions: A logistic model including risk factors for lymph node metastasis can improve the accuracy of MRI diagnosis of rectal cancer.
Xiu Wang;Zhenhu Zhang;Yamin Shi;Wenjuan Zhang;Chongyi Su;Dong Wang
Journal of Microbiology and Biotechnology
/
v.34
no.5
/
pp.1164-1177
/
2024
Esophageal squamous cell carcinoma (ESCC) is among the most common malignant tumors of the digestive tract, with the sixth highest fatality rate worldwide. The ESCC-related dataset, GSE20347, was downloaded from the Gene Expression Omnibus (GEO) database, and weighted gene co-expression network analysis was performed to identify genes that are highly correlated with ESCC. A total of 91 transcriptome expression profiles and their corresponding clinical information were obtained from The Cancer Genome Atlas database. A mitochondria-associated risk (MAR) model was constructed using the least absolute shrinkage and selection operator Cox regression analysis and validated using GSE161533. The tumor microenvironment and drug sensitivity were explored using the MAR model. Finally, in vitro experiments were performed to analyze the effects of hub genes on the proliferation and invasion abilities of ESCC cells. To confirm the predictive ability of the MAR model, we constructed a prognostic model and assessed its predictive accuracy. The MAR model revealed substantial differences in immune infiltration and tumor microenvironment characteristics between high- and low-risk populations and a substantial correlation between the risk scores and some common immunological checkpoints. AZD1332 and AZD7762 were more effective for patients in the low-risk group, whereas Entinostat, Nilotinib, Ruxolutinib, and Wnt.c59 were more effective for patients in the high-risk group. Knockdown of TYMS significantly inhibited the proliferation and invasive ability of ESCC cells in vitro. Overall, our MAR model provides stable and reliable results and may be used as a prognostic biomarker for personalized treatment of patients with ESCC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.