• Title/Summary/Keyword: Predictive Analysis

Search Result 2,070, Processing Time 0.028 seconds

3D-QSAR Studies of 2-Arylbenzoxazoles as Novel Cholesteryl Ester Transfer Protein Inhibitors

  • Ghasemi, Jahan B.;Pirhadi, Somayeh;Ayati, Mahnaz
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.645-650
    • /
    • 2011
  • The 3D-QSAR study of 2-arylbenzoxazoles as novel cholesteryl ester transfer protein inhibitors was performed by comparative molecular field analysis (CoMFA), CoMFA region focusing (CoMFA-RF) for optimizing the region for the final PLS analysis, and comparative molecular similarity indices analysis (CoMSIA) methods to determine the factors required for the activity of these compounds. The best orientation was searched by all-orientation search strategy using AOS, to minimize the effect of the initial orientation of the structures. The predictive ability of CoMFARF and CoMSIA were determined using a test set of twelve compounds giving predictive correlation coefficients of 0.886, and 0.754 respectively indicating good predictive power. Further, the robustness and sensitivity to chance correlation of the models were verified by bootstrapping and progressive scrambling analyses respectively. Based upon the information derived from CoMFA(RF) and CoMSIA, identified some key features that may be used to design new inhibitors for cholesteryl ester transfer protein.

A Study on the Development of Business English Tests Based on an Analysis of the Predictive Validity of the TOEIC and a Delphi Study of Working Skills in English to be Assessed (비즈니스 영어 업무 능력에 대한 TOEIC의 예측 타당도 검증과 델파이 연구)

  • 김은상;최연희
    • Korean Journal of English Language and Linguistics
    • /
    • v.4 no.2
    • /
    • pp.229-252
    • /
    • 2004
  • The TOEIC has widely used to evaluate business English proficiency in Korea, but those who achieved high scores still often face difficulties in performing their duties in English at work. This implies that the test may not evaluate business English proficiency effectively enough. With an ultimate goal of proposing an effective way of assessing business English proficiency, therefore, his study analyzed the predictive validity of the TOEIC. A correlation analysis was conducted between TOEIC scores of 64 office workers of multinational companies and their working skills in English evaluated by themselves, and their colleagues and seniors. Its results illustrated a significant correlation between their listening and reading scores and their working skills measured by all the groups, but not between their scores and their working skills in speaking and writing. In addition, the study did a delphi study to identify working skills in English to be assessed in business English tests and a contents analysis of the TOEIC. The results suggest business English tests should be able to assess working skills by work types and more direct testing of working skills in speaking and writing is needed.

  • PDF

Visual Analytics Approach for Performance Improvement of predicting youth physical growth model (청소년 신체 성장 예측 모델의 성능 향상을 위한 시각적 분석 방법)

  • Yeon, Hanbyul;Pi, Mingyu;Seo, Seongbum;Ha, Seoho;Oh, Byungjun;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.4
    • /
    • pp.21-29
    • /
    • 2017
  • Previous visual analytics researches has focused on reducing the uncertainty of predicted results using a variety of interactive visual data exploration techniques. The main purpose of the interactive search technique is to reduce the quality difference of the predicted results according to the level of the decision maker by understanding the relationship between the variables and choosing the appropriate model to predict the unknown variables. However, it is difficult to create a predictive model which forecast time series data whose overall trends is unknown such as youth physical growth data. In this paper, we pro pose a novel predictive analysis technique to forecast the physical growth value in small pieces of time series data with un certain trends. This model estimates the distribution of data at a particular point in time. We also propose a visual analytics system that minimizes the possible uncertainties in predictive modeling process.

Predictive model for the shear strength of concrete beams reinforced with longitudinal FRP bars

  • Alzabeebee, Saif;Dhahir, Moahmmed K.;Keawsawasvong, Suraparb
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.143-154
    • /
    • 2022
  • Corrosion of steel reinforcement is considered as the main cause of concrete structures deterioration, especially those under humid environmental conditions. Hence, fiber reinforced polymer (FRP) bars are being increasingly used as a replacement for conventional steel owing to their non-corrodible characteristics. However, predicting the shear strength of beams reinforced with FRP bars still challenging due to the lack of robust shear theory. Thus, this paper aims to develop an explicit data driven based model to predict the shear strength of FRP reinforced beams using multi-objective evolutionary polynomial regression analysis (MOGA-EPR) as data driven models learn the behavior from the input data without the need to employee a theory that aid the derivation, and thus they have an enhanced accuracy. This study also evaluates the accuracy of predictive models of shear strength of FRP reinforced concrete beams employed by different design codes by calculating and comparing the values of the mean absolute error (MAE), root mean square error (RMSE), mean (𝜇), standard deviation of the mean (𝜎), coefficient of determination (R2), and percentage of prediction within error range of ±20% (a20-index). Experimental database has been developed and employed in the model learning, validation, and accuracy examination. The statistical analysis illustrated the robustness of the developed model with MAE, RMSE, 𝜇, 𝜎, R2, and a20-index of 14.6, 20.8, 1.05, 0.27, 0.85, and 0.61, respectively for training data and 10.4, 14.1, 0.98, 0.25, 0.94, and 0.60, respectively for validation data. Furthermore, the developed model achieved much better predictions than the standard predictive models as it scored lower MAE, RMSE, and 𝜎, and higher R2 and a20-index. The new model can be used in future with confidence in optimized designs as its accuracy is higher than standard predictive models.

The Predictive Factors to Participation in Cervical Cancer Screening Program (성인 여성의 자궁경부암 선별검사 수검에 관한 예측인자)

  • Kim, Young-Bok;Kim, Myung;Chung, Chee-Kyung;Lee, Won-Chul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.34 no.3
    • /
    • pp.237-243
    • /
    • 2001
  • Objectives : To examine the screening rate of cervical cancer in women and to find out the predictive factors for participation in cervical cancer screening programs within their life-time and within the last two years. Methods : The data was based on self-reported questionnaires from 1,613 women whose ages ranged from 26 to 60 years; this survey was peformed between December 1999 and January 2000. This study analyzed the predictive factors for participation in cervical cancer screening programs within their life-time and within the last two years. A logistic regression analysis was performed in order to derive the significant variables from the predisposing factors(demographic factor, health promotion behavior, reproductive factor), intervention factors(information channel, relation with medical stan, and proximal factors(attitude, social influence, self-efficacy). All analyses were peformed by the PC-SAS 6.12. Results : Our analyses showed that the screening rate for the women who received a cervical cancer screening(Pap smear) more than once within their life-time was 56.1% while those who had received one within the last two years was 34.5%. The significant factors for participation in cervical cancer screening program within their life-time were their income, married age, health promotion score, relation with medical staffs, social influence, and self-efficacy. On the other hand, age, number of pregnancies, menarche age, relation with medical staffs, social influences, and self-efficacy were significant factors for those being screened within the last two years. The predictive power of the logit model within their life-time was 68.8% and that within the last two years was 66.6%. Conclusion : The predictive factors for participation in cervical cancer screening program within their life-time are different from those for within the last two years. and that women's relations with medical staffs and social influences were the critical factors impacting on cervical cancer screening rates.

  • PDF

DESIGN OF A PWR POWER CONTROLLER USING MODEL PREDICTIVE CONTROL OPTIMIZED BY A GENETIC ALGORITHM

  • Na, Man-Gyun;Hwang, In-Joon
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.81-92
    • /
    • 2006
  • In this study, the core dynamics of a PWR reactor is identified online by a recursive least-squares method. Based on the identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to designing an automatic controller for the thermal power control of PWR reactors. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, this procedure for solving the optimization problem is repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired temperature, as well as minimizing the variation of the control rod positions. In addition, the objectives are subject to the maximum and minimum control rod positions as well as the maximum control rod speed. Therefore, a genetic algorithm that is appropriate for the accomplishment of multiple objectives is utilized in order to optimize the model predictive controller. A three-dimensional nuclear reactor analysis code, MASTER that was developed by the Korea Atomic Energy Research Institute (KAERI) , is used to verify the proposed controller for a nuclear reactor. From the results of a numerical simulation that was carried out in order to verify the performance of the proposed controller with a $5\%/min$ ramp increase or decrease of a desired load and a $10\%$ step increase or decrease (which were design requirements), it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

A Pressurized Water Reactor Power Controller Using Model Predictive Control Optimized by a Genetic Algorithm (유전자 알고리즘에 의해 최적화된 모델예측제어를 이용한 PWR 출력제어기)

  • Na, Man-Gyun;Hwang, In-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.104-106
    • /
    • 2005
  • In this work, a PWR reactor core dynamics is identified online by a recursive least squares method. Based on this identified reactor model consisting of the control rod position and the core average coolant temperature, the future average coolant temperature is predicted. A model predictive control method is applied to design an automatic controller for thermal power control in PWRs. The basic concept of the model predictive control is to solve an optimization problem for a finite future at current time and to implement as the current control input only the first optimal control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The objectives of the proposed model predictive controller are to minimize both the difference between the predicted core coolant temperature and the desired one, and the variation of the control rod positions. Also, the objectives are subject to maximum and minimum control rod positions and maximum control rod speed. Therefore, the genetic algorithm that is appropriate to accomplish multiple objectives is used to optimize the model predictive controller. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), is used to verify the proposed controller for a nuclear reactor. From results of numerical simulation to check the performance of the proposed controller at the 5%/min ramp increase or decrease of a desired load and its 10% step increase or decrease which are design requirements, it was found that the nuclear power level controlled by the proposed controller could track the desired power level very well.

  • PDF

The Measurements of the Resting Metabolic Rate (RMR) and the Accuracy of RMR Predictive Equations for Korean Farmers (농업인의 휴식대사량 측정 및 휴식대사량 예측공식의 정확도 평가)

  • Son, Hee-Ryoung;Yeon, Seo-Eun;Choi, Jung-Sook;Kim, Eun-Kyung
    • Korean Journal of Community Nutrition
    • /
    • v.19 no.6
    • /
    • pp.568-580
    • /
    • 2014
  • Objectives: The purpose of this study was to measure the resting metabolic rate (RMR) and to assess the accuracy of RMR predictive equations for Korean farmers. Methods: Subjects were 161 healthy Korean farmers (50 males, 111 females) in Gangwon-area. The RMR was measured by indirect calorimetry for 20 minutes following a 12-hour overnight fasting. Selected predictive equations were Harris-Benedict, Mifflin, Liu, KDRI, Cunningham (1980, 1991), Owen-W, F, FAO/WHO/UNU-W, WH, Schofield-W, WH, Henry-W, WH. The accuracy of the equations was evaluated on the basis of bias, RMSPE, accurate prediction and Bland-Altman plot. Further, new RMR predictive equations for the subjects were developed by multiple regression analysis using the variables highly related to RMR. Results: The mean of the measured RMR was 1703 kcal/day in males and 1343 kcal/day in females. The Cunningham (1980) equation was the closest to measured RMR than others in males and in females (males Bias -0.47%, RMSPE 110 kcal/day, accurate prediction 80%, females Bias 1.4%, RMSPE 63 kcal/day, accurate prediction 81%). Body weight, BMI, circumferences of waist and hip, fat mass and FFM were significantly correlated with measured RMR. Thus, derived prediction equation as follow : males RMR = 447.5 + 17.4 Wt, females RMR = 684.5 - 3.5 Ht + 11.8 Wt + 12.4 FFM. Conclusions: This study showed that Cunningham (1980) equation was the most accurate to predict RMR of the subjects. Thus, Cunningham (1980) equation could be used to predict RMR of Korean farmers studied in this study. Future studies including larger subjects should be carried out to develop RMR predictive equations for Korean farmers.

Development of a New Prediction Alarm Algorithm Applicable to Pumped Storage Power Plant (양수발전 설비에 적용 가능한 새로운 고장 예측경보 알고리즘 개발)

  • Dae-Yeon Lee;Soo-Yong Park;Dong-Hyung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.133-142
    • /
    • 2023
  • The large process plant is currently implementing predictive maintenance technology to transition from the traditional Time-Based Maintenance (TBM) approach to the Condition-Based Maintenance (CBM) approach in order to improve equipment maintenance and productivity. The traditional techniques for predictive maintenance involved managing upper/lower thresholds (Set-Point) of equipment signals or identifying anomalies through control charts. Recently, with the development of techniques for big analysis, machine learning-based AAKR (Auto-Associative Kernel Regression) and deep learning-based VAE (Variation Auto-Encoder) techniques are being actively applied for predictive maintenance. However, this predictive maintenance techniques is only effective during steady-state operation of plant equipment, and it is difficult to apply them during start-up and shutdown periods when rises or falls. In addition, unlike processes such as nuclear and thermal power plants, which operate for hundreds of days after a single start-up, because the pumped power plant involves repeated start-ups and shutdowns 4-5 times a day, it is needed the prediction and alarm algorithm suitable for its characteristics. In this study, we aim to propose an approach to apply the optimal predictive alarm algorithm that is suitable for the characteristics of Pumped Storage Power Plant(PSPP) facilities to the system by analyzing the predictive maintenance techniques used in existing nuclear and coal power plants.

Analysis and Novel Predictive Control of Current for Permanent Magnet Linear Synchronous Motor using SVPWM (SVPWM을 이용한 PMLSM의 전류 제어 분석과 새로운 예측 전류 제어)

  • Sun, Jung-Won;Lee, Jin-Woo;Suh, Jin-Ho;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2631-2633
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMLSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are that the measured stator current is tracked the command current value accurately and the transient interval is shorten as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that take to apply the voltage to motor. A new control strategy is the scheme that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF