• 제목/요약/키워드: Prediction time

검색결과 5,934건 처리시간 0.036초

IGS RTS와 Ultra Rapid 실시간 성능 분석 (An Analysis on the Real-Time Performance of the IGS RTS and Ultra-Rapid Products)

  • 김민규;김정래
    • 한국항행학회논문지
    • /
    • 제19권3호
    • /
    • pp.199-206
    • /
    • 2015
  • IGS에서는 실시간 정밀 측위에 사용할 수 있도록 궤도 예측값인 IGU (IGS Ultra-rapid)와 실시간 궤도 추정값인 RTS (real-time service) 보정정보를 제공한다. IGU는 데이터 지연시간이 없지만, RTS는 5~30 초의 지연시간을 갖기 때문에 실시간으로 사용하기 위해선 지연시간만큼 예측이 필요하다. 본 논문에서는 실시간 사용 측면에서 RTS와 IGU의 성능 분석을 수행하였다. 한반도 내에서 RTS 제공 비율을 파악하기 위하여 한반도에서 관측되는 위성 대비 RTS 제공 비율을 계산하였으며 그 결과 99.3%로 나타났다. RTS의 정확도를 확인하기 위해 보정정보를 방송궤도력에 적용하여 오차를 분석하였으며 이 때 3D 궤도 RMS 오차는 0.043 m으로 나타났다. 실시간 사용 측면에서 RTS와 IGU를 비교하였는데, 실시간으로 가정하였기 때문에 IGU는 예측 정보만 이용하였고, RTS는 데이터 지연시간동안 다항식 모델로 예측을 수행하였다. RTS와 IGU를 1초 간격으로 각각 외삽, 보간을 수행하였고 그 결과 궤도 예측 성능은 비슷하였으며 시계 예측 성능은 RTS가 0.13 m 더 뛰어났다.

$Na{\ddot{i}}ve$ Bayesian 분류화 기법을 이용한 시간대별 평균 구간 속도 기반 주행 시간 예측 알고리즘 (Travel Time Prediction Algorithm Based on Time-varying Average Segment Velocity using $Na{\ddot{i}}ve$ Bayesian Classification)

  • 엄정호;니하드카림초우더리;이현조;장재우;김연중
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권3호
    • /
    • pp.31-43
    • /
    • 2008
  • 주행 시간 예측은 첨단 여행정보 시스템 (ATIS) 및 교통관리 시스템 (ITS)에서 필수적이다. 이를 위해 본 연구에서는 대용량의 데이터 분류에서 높은 정확도와 빠른 속도를 보장하는 $Na{\ddot{i}}ve$ Bayesian 분류화 기법을 기반으로 한 주행시간 예측 알고리즘을 제안한다. 제안된 알고리즘은 도로 네트워크 상에서 사용자 지정 주행 경로에 대하여 주행시간 예측이 가능하며, 또한 주어진 경로에 대해 시간대 별 평균 구간 속도를 고려하여 보다 정확한 주행 시간 예측을 수행한다. 제안된 알고리즘을 기존의 링크-기반 예측(link-based prediction)알고리즘[1] 및 Micro T* 알고리즘[2]과 성능 비교를 수행하였다. 성능 비교 결과, 제안된 기법이 타 예측기법에 비해 MARE (mean absolute relative error)가 크게 감소하여 성능이 향상되었음을 보였다.

  • PDF

어닐링에 의한 Hierarchical Mixtures of Experts를 이용한 시계열 예측 (Prediction of Time Series Using Hierarchical Mixtures of Experts Through an Annealing)

  • 유정수;이원돈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.360-362
    • /
    • 1998
  • In the original mixtures of experts framework, the parameters of the network are determined by gradient descent, which is naturally slow. In [2], the Expectation-Maximization(EM) algorithm is used instead, to obtain the network parameters, resulting in substantially reduced training times. This paper presents the new EM algorithm for prediction. We show that an Efficient training algorithm may be derived for the HME network. To verify the utility of the algorithm we look at specific examples in time series prediction. The application of the new EM algorithm to time series prediction has been quiet successful.

  • PDF

Short-term Wind Power Prediction Based on Empirical Mode Decomposition and Improved Extreme Learning Machine

  • Tian, Zhongda;Ren, Yi;Wang, Gang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1841-1851
    • /
    • 2018
  • For the safe and stable operation of the power system, accurate wind power prediction is of great significance. A wind power prediction method based on empirical mode decomposition and improved extreme learning machine is proposed in this paper. Firstly, wind power time series is decomposed into several components with different frequency by empirical mode decomposition, which can reduce the non-stationary of time series. The components after decomposing remove the long correlation and promote the different local characteristics of original wind power time series. Secondly, an improved extreme learning machine prediction model is introduced to overcome the sample data updating disadvantages of standard extreme learning machine. Different improved extreme learning machine prediction model of each component is established. Finally, the prediction value of each component is superimposed to obtain the final result. Compared with other prediction models, the simulation results demonstrate that the proposed prediction method has better prediction accuracy for wind power.

Financial Data Mining Using Time delay Neural Networks

  • Kim, Hyun-Jung;Shin, Kyung-Shik
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.122-127
    • /
    • 2001
  • This study investigates the effectiveness of time delay neural networks(TDNN) for the time dependent prediction domain. Although it is well-known fact that the back-propagation neural network(BPN) performs well in pattern recognition tasks, the method has some limitations in that it can only learn an input mapping of static (or spatial) patterns that are independent of time of sequences. The preliminary results show that the accuracy of TDNN is higher than the standard BPN with time lag. Our proposed approaches are demonstrated by the stork market prediction domain.

  • PDF

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

다중 유사 시계열 모델링 방법을 통한 예측정확도 개선에 관한 연구 (A Study on Improving Prediction Accuracy by Modeling Multiple Similar Time Series)

  • 조영희;이계성
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.137-143
    • /
    • 2010
  • 본 연구에서는 시계열 자료처리를 통해 예측정확도를 개선시키는 방안에 대해 연구하였다. 단일 예측 모형의 단점을 개선하기 위해 유사한 시계열 자료를 선정하여 이들로부터 모델을 유도하였다. 이 모델로부터 유효 규칙을 생성해내 향후 자료의 변화를 예측하였다. 실험을 통해 예측정확도에 있어 유의한 수준의 개선효과가 있었음을 확인하였다. 예측모델 구성을 위해 고정구간과 가변구간을 두고 모델링하여 고정구간, 창이동, 누적구간 방식으로 구분하여 예측정확도를 측정하였다. 이중 누적구간 방식이 가장 정확도가 높게 나왔다.

Saturation Prediction for Crowdsensing Based Smart Parking System

  • Kim, Mihui;Yun, Junhyeok
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1335-1349
    • /
    • 2019
  • Crowdsensing technologies can improve the efficiency of smart parking system in comparison with present sensor based smart parking system because of low install price and no restriction caused by sensor installation. A lot of sensing data is necessary to predict parking lot saturation in real-time. However in real world, it is hard to reach the required number of sensing data. In this paper, we model a saturation predication combining a time-based prediction model and a sensing data-based prediction model. The time-based model predicts saturation in aspects of parking lot location and time. The sensing data-based model predicts the degree of saturation of the parking lot with high accuracy based on the degree of saturation predicted from the first model, the saturation information in the sensing data, and the number of parking spaces in the sensing data. We perform prediction model learning with real sensing data gathered from a specific parking lot. We also evaluate the performance of the predictive model and show its efficiency and feasibility.

A Multi-step Time Series Forecasting Model for Mid-to-Long Term Agricultural Price Prediction

  • Jonghyun, Park;Yeong-Woo, Lim;Do Hyun, Lim;Yunsung, Choi;Hyunchul, Ahn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.201-207
    • /
    • 2023
  • 본 논문에서는 Multi-Step Time Series의 세 가지 전략을 비교 분석하기 위해 LGBM, MLP, LSTM, GRU를 사용하여 농산물 중장기 가격 예측에 대한 최적의 모형을 제안한다. 제안 모형은 다각도로 전략을 선택하여 모델과 전략간 최적의 조합을 찾도록 설계되었다. 기존 농산물 가격 예측 연구에서는 전통 계량경제 모델인 ARIMA를 비롯하여 LSTM 계열 모델이 주로 사용된 반면 Multi-Step Time Series 관련 농산물 가격 예측 연구는 매우 제한적이다. 본 연구에서는 농산물 가격의 변동성 정도에 따라 두 개의 기간으로 나누어 실험을 진행하였으며, Direct, Hybrid, Multiple Outputs 등 세 전략의 중장기 가격 예측 결과 Hybrid 접근법이 상대적으로 우수한 성능을 보였다.본 연구 결과는 중장기 일별 가격 예측을 고도화할 수 있는 효과적인 대안을 제시한다는 측면에서 학술적, 실무적 의의를 갖는다.

근전도 기반의 실시간 등척성 손가락 힘 예측 알고리즘 개발 (Development of a Real-Time Algorithm for Isometric Pinch Force Prediction from Electromyogram (EMG))

  • 최창목;권순철;박원일;신미혜;김정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1588-1593
    • /
    • 2008
  • This paper describes a real-time isometric pinch force prediction algorithm from surface electromyogram (sEMG) using multilayer perceptron (MLP) for human robot interactive applications. The activities of seven muscles which are observable from surface electrodes and also related to the movements of the thumb and index finger joints were recorded during pinch force experiments. For the successful implementation of the real-time prediction algorithm, an off-line analysis was performed using the recorded activities. Four muscles were selected for the force prediction by using the Fisher linear discriminant analysis among seven muscles, and the four muscle activities provided effective information for mapping sEMG to the pinch force. The MLP structure was designed to make training efficient and to avoid both under- and over-fitting problems. The pinch force prediction algorithm was tested on five volunteers and the results were evaluated using two criteria: normalized root mean squared error (NRMSE) and correlation (CORR). The training time for the subjects was only 2 min 29 sec, but the prediction results were successful with NRMSE = 0.112 ${\pm}$ 0.082 and CORR = 0.932 ${\pm}$ 0.058. These results imply that the proposed algorithm is useful to measure the produced pinch force without force sensors in real-time. The possible applications include controlling bionic finger robot systems to overcome finger paralysis or amputation.

  • PDF