• Title/Summary/Keyword: Prediction query processing framework

Search Result 2, Processing Time 0.019 seconds

Design of Moving Object Pattern-based Distributed Prediction Framework in Real-World Road Networks (실세계 도로 네트워크 환경에서의 이동객체 패턴기반 분산 예측 프레임워크 설계)

  • Chung, Jaehwa
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.527-532
    • /
    • 2014
  • Recently, due to the proliferation of mobile smart devices, the inovation of bigdata, which analyzes and processes massive data collected from various sensors implaned in smart devices, expands to LBSs. Many location prediction techniques for moving objects have been studied in literature. However, as the majority of studies perform location prediction which depends on specific applications, they hardly reflect the technical requirements of next-generation spatio-temporal information services. Therefore, this paper proposes the design of general-purpose distributed moving object prediction query processing framework that is capable of performing primitive and various types of queries effectively based on massive spatio-temporal data of moving objects in real-world space networks.

Hazelcast Vs. Ignite: Opportunities for Java Programmers

  • Maxim, Bartkov;Tetiana, Katkova;S., Kruglyk Vladyslav;G., Murtaziev Ernest;V., Kotova Olha
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.406-412
    • /
    • 2022
  • Storing large amounts of data has always been a big problem from the beginning of computing history. Big Data has made huge advancements in improving business processes by finding the customers' needs using prediction models based on web and social media search. The main purpose of big data stream processing frameworks is to allow programmers to directly query the continuous stream without dealing with the lower-level mechanisms. In other words, programmers write the code to process streams using these runtime libraries (also called Stream Processing Engines). This is achieved by taking large volumes of data and analyzing them using Big Data frameworks. Streaming platforms are an emerging technology that deals with continuous streams of data. There are several streaming platforms of Big Data freely available on the Internet. However, selecting the most appropriate one is not easy for programmers. In this paper, we present a detailed description of two of the state-of-the-art and most popular streaming frameworks: Apache Ignite and Hazelcast. In addition, the performance of these frameworks is compared using selected attributes. Different types of databases are used in common to store the data. To process the data in real-time continuously, data streaming technologies are developed. With the development of today's large-scale distributed applications handling tons of data, these databases are not viable. Consequently, Big Data is introduced to store, process, and analyze data at a fast speed and also to deal with big users and data growth day by day.