• Title/Summary/Keyword: Prediction performance

Search Result 5,601, Processing Time 0.04 seconds

Performance Characteristics and Prediction on a Partially Admitted Single-Stage Axial-Type Micro Turbine (부분분사 축류형 마이크로터빈에서의 성능예측 및 성능특성에 관한 연구)

  • Cho Chong-Hyun;Choi Sang-Kyu;Cho Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.4 s.37
    • /
    • pp.13-19
    • /
    • 2006
  • For axial-type turbines which operate at partial admission, a performance prediction model is developed. In this study, losses generated within the turbine are classified to windage loss, expansion loss and mixing loss. The developed loss model is compared with experimental results. Particularly, if a turbine operates at a very low partial admission rate, a circular-type nozzle is more efficient than a rectangular-type nozzle. For this case, a performance prediction model is developed and an experiment is conducted with the circular-type nozzle. The predicted result is compared with the measured performance, and the developed model quite well agrees with the experimental results. So the developed model could be applied to predict the performance of axial-type turbines which operate at various partial admission rates or with different nozzle shape.

Mean Streamline Analysis for Performance Prediction of Cross- Flow Fans

  • Kim, Jae-Won;Oh, Hyoung-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1428-1434
    • /
    • 2004
  • This paper presents the mean streamline analysis using the empirical loss correlations for performance prediction of cross-flow fans. Comparison of overall performance predictions with test data of a cross-flow fan system with a simplified vortex wall scroll casing and with the published experimental characteristics for a cross-flow fan has been carried out to demonstrate the accuracy of the proposed method. Predicted performance curves by the present mean streamline analysis agree well with experimental data for two different cross-flow fans over the normal operating conditions. The prediction method presented herein can be used efficiently as a tool for the preliminary design and performance analysis of general-purpose cross-flow fans.

A Study of the Performance Prediction Models of Mobile Graphics Processing Units

  • Kim, Cheong Ghil
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2019
  • Currently mobile services are on the verge of full commercialization ahead of 5G mobile communication (5G). The first goal could be to preempt the 5G market through realistic media services utilizing VR (Virtual Reality) and AR (Augmented Reality) technologies that users can most easily experience. Basically this movement is based on the advanced development of smart devices and high quality graphics processing computing power of mobile application processors. Accordingly, the importance of mobile GPUs is emerging and the most concern issue becomes a model for predicting the power and performance for smooth operation of high quality mobile contents. In many cases, the performance of mobile GPUs has been introduced in terms of power consumption of mobile GPUs using dynamic voltage and frequency scaling and throttling functions for power consumption and heat management. This paper introduces several studies of mobile GPU performance prediction model with user-friendly methods not like conventional power centric performance prediction models.

A performance improvement of neural network for predicting defect size of steam generator tube using early stopping (조기학습정지를 이용한 원전 SG세관 결함크기 예측 신경회로망의 성능 향상)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2095-2101
    • /
    • 2008
  • In this paper, we consider a performance improvement of neural network for predicting defect size of steam generator tube using early stopping. Usually, neural network is trained until MSE becomes less than a prescribed error goal. The smaller the error goal, the greater the prediction performance for the trained data. However, as the error goal is decreased, an over fitting is likely to start during supervised training of a neural network, which usually deteriorates the generalization performance. We propose that, for the prediction of an axisymmetric defect size, early stopping can be used to avoid the over-fitting. Through various experiments on the axisymmetric defect samples, we found that the difference bet ween the prediction error of neural network based on early stopping and that of ideal neural network is reasonably small. This indicates that the error goal used for neural network training for the prediction of defect size can be efficiently selected by early stopping.

Performance prediction and loss analysis of centrifugal compressors (원심 압축기의 성능 예측 및 손실 해석)

  • O, Hyeong-U;Yun, Ui-Su;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.804-812
    • /
    • 1997
  • The present study has tested most of loss models previously published in the open literature and found an optimum set of empirical loss models for a reliable performance prediction of centrifugal compressors. In order to improve the prediction of efficiency curves, this paper recommends a modified parasitic loss model. Predicted performance curves by the proposed optimum set agree fairly well with experimental data for a variety of centrifugal compressors. The prediction method developed through this study can serve as a tool for preliminary design and assist the understanding of the operational characteristics of general purpose centrifugal compressors.

Parameter Study of TEIS Model, Two-zone Model, and Stanitz's Equations (직렬 두요소 모델, 두 영역 모델, Stanitz 방정식에 대한 변수 연구)

  • Yoon, Sung-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.580-585
    • /
    • 2000
  • Recently TEIS model, Two-zone model aid Stanitz equations are often used for off-design performance prediction of centrifugal compressor and pump. The prediction results often agree well with experimental data. However these models and equations have some important variables which have a great influence on overall performance prediction me. But no systematic study about these variables has been performed. So, in this paper, a systematic study about these variables influence on overall performance prediction owe is peformed. Finally the meaning of the variables and the research to be undertaken are discussed.

  • PDF

Comparative Analysis of PM10 Prediction Performance between Neural Network Models

  • Jung, Yong-Jin;Oh, Chang-Heon
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.241-247
    • /
    • 2021
  • Particulate matter has emerged as a serious global problem, necessitating highly reliable information on the matter. Therefore, various algorithms have been used in studies to predict particulate matter. In this study, we compared the prediction performance of neural network models that have been actively studied for particulate matter prediction. Among the neural network algorithms, a deep neural network (DNN), a recurrent neural network, and long short-term memory were used to design the optimal prediction model using a hyper-parameter search. In the comparative analysis of the prediction performance of each model, the DNN model showed a lower root mean square error (RMSE) than the other algorithms in the performance comparison using the RMSE and the level of accuracy as metrics for evaluation. The stability of the recurrent neural network was slightly lower than that of the other algorithms, although the accuracy was higher.

Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis (시계열 분석 모형 및 머신 러닝 분석을 이용한 수출 증가율 장기예측 성능 비교)

  • Seong-Hwi Nam
    • Korea Trade Review
    • /
    • v.46 no.6
    • /
    • pp.191-209
    • /
    • 2021
  • In this paper, various time series analysis models and machine learning models are presented for long-term prediction of export growth rate, and the prediction performance is compared and reviewed by RMSE and MAE. Export growth rate is one of the major economic indicators to evaluate the economic status. And It is also used to predict economic forecast. The export growth rate may have a negative (-) value as well as a positive (+) value. Therefore, Instead of using the ReLU function, which is often used for time series prediction of deep learning models, the PReLU function, which can have a negative (-) value as an output value, was used as the activation function of deep learning models. The time series prediction performance of each model for three types of data was compared and reviewed. The forecast data of long-term prediction of export growth rate was deduced by three forecast methods such as a fixed forecast method, a recursive forecast method and a rolling forecast method. As a result of the forecast, the traditional time series analysis model, ARDL, showed excellent performance, but as the time period of learning data increases, the performance of machine learning models including LSTM was relatively improved.

Performance Evaluation of Stacking Models Based on Random Forest, XGBoost, and LGBM for Wind Power Forecasting (Random Forest, XGBoost, LGBM 조합형 Stacking 모델을 이용한 풍력 발전량 예측 성능 평가)

  • Hui-Chan Kim;Dae-Young Kim;Bum-Suk Kim
    • Journal of Wind Energy
    • /
    • v.15 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Wind power is highly variable due to the intermittent nature of wind. This can lead to power grid instability and decreased efficiency. Therefore, it is necessary to improve wind power prediction performance to minimize the negative impact on the power system. Recently, wind power prediction using machine learning has gained popularity, and ensemble models in machine learning have shown high prediction accuracy. RF, GB, XGB and LGBM are decision tree-based ensemble models and have high predictive performance in wind power, but these models have problems from over-fitting and strong dependence on certain variables. However, the stacking model can improve prediction performance by combining individual models and compensate for the shortcomings of each model. In this study, The MAE of RF, XGB and LGBM is 310.42 kWh, 217.07 kWh and 265.20 kWh, respectively, while the stacking model based on RF, XGB and LGBM is 202.33 kWh. Stacking models can improve prediction performance. Finally, it is expected to contribute to electricity supply and demand planning.

A Study on the Performance Prediction of Marine System using Approximation Model (근사모델을 이용한 해양시스템 성능예측에 관한 연구)

  • Lee, Jae-chul;Shin, Sung-chul;Lee, Soon-Sub;Kang, Dong-hoon;Lee, Jong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.286-294
    • /
    • 2016
  • In the initial design stage, the geometry of systems needs to be optimized regarding its performance. However, performance analysis is very time-consuming. Therefore, optimization becomes difficult/impossible problems because we need to evaluate the system performance for alternative design cases. To overcome this problem, many researchers perform prediction of system performance using the approximation model. The response surface method (RSM) is typically used to predict the system performance in the various research fields, but it presents prediction errors for highly nonlinear systems. The major objective of this paper is to propose a proper prediction method for marine system problems. Case studies of marine systems (the substructure of a floating offshore wind turbine considering hydrodynamic performance and bulk carrier bottom stiffened panels considering structure performance) verify that the proposed method is applicable to performance prediction in marine systems.