• Title/Summary/Keyword: Prediction of variables

Search Result 1,863, Processing Time 0.023 seconds

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

Optimization and Development of Prediction Model on the Removal Condition of Livestock Wastewater using a Response Surface Method in the Photo-Fenton Oxidation Process (Photo-Fenton 산화공정에서 반응표면분석법을 이용한 축산폐수의 COD 처리조건 최적화 및 예측식 수립)

  • Cho, Il-Hyoung;Chang, Soon-Woong;Lee, Si-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.6
    • /
    • pp.642-652
    • /
    • 2008
  • The aim of our research was to apply experimental design methodology in the optimization condition of Photo-Fenton oxidation of the residual livestock wastewater after the coagulation process. The reactions of Photo-Fenton oxidation were mathematically described as a function of parameters amount of Fe(II)($x_1$), $H_2O_2(x_2)$ and pH($x_3$) being modeled by the use of the Box-Behnken method, which was used for fitting 2nd order response surface models and was alternative to central composite designs. The application of RSM using the Box-Behnken method yielded the following regression equation, which is an empirical relationship between the removal(%) of livestock wastewater and test variables in coded unit: Y = 79.3 + 15.61x$_1$ - 7.31x$_2$ - 4.26x$_3$ - 18x$_1{^2}$ - 10x$_2{^2}$ - 11.9x$_3{^2}$ + 2.49x$_1$x$_2$ - 4.4x$_2$x$_3$ - 1.65x$_1$x$_3$. The model predicted also agreed with the experimentally observed result(R$^2$ = 0.96) The results show that the response of treatment removal(%) in Photo-Fenton oxidation of livestock wastewater were significantly affected by the synergistic effect of linear terms(Fe(II)($x_1$), $H_2O_2(x_2)$, pH(x$_3$)), whereas Fe(II) $\times$ Fe(II)(x$_1{^2}$), $H_2O_2$ $\times$ $H_2O_2$(x$_2{^2}$) and pH $\times$ pH(x$_3{^2}$) on the quadratic terms were significantly affected by the antagonistic effect. $H_2O_2$ $\times$ pH(x$_2$x$_3$) had also a antagonistic effect in the cross-product term. The estimated ridge of the expected maximum response and optimal conditions for Y using canonical analysis were 84 $\pm$ 0.95% and (Fe(II)(X$_1$) = 0.0146 mM, $H_2O_2$(X$_2$) = 0.0867 mM and pH(X$_3$) = 4.704, respectively. The optimal ratio of Fe/H$_2O_2$ was also 0.17 at the pH 4.7.

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF