• Title/Summary/Keyword: Prediction of ground-condition

Search Result 134, Processing Time 0.024 seconds

Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading (점증 재하를 고려한 선행재하 공법 적용 연약지반의 현장 계측을 통한 침하량 예측 방법의 개발)

  • Woo, Sang-Inn;Yune, Chan-Young;Baek, Seung-Kyung;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.452-461
    • /
    • 2008
  • Previous settlement prediction method based on settlement monitoring such as hyperbolic, monden method were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considers influence factors of consolidation settlement and increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. As a result, new prediction method is expected to have great applicability and practicability for the prediction of settlement behavior.

  • PDF

Prediction of Industrial Noise Propagation Subjected to Ground Effect (지표면의 반사특성을 고려한 환경소음 예측)

  • 한상보
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.329-335
    • /
    • 2001
  • The analytical model of the ground wave can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. The effects of the ground surface and the wind can be formulated in terms of the ground coefficient and the noise source parameter. Upward and downward conditions can also be addressed by considering the direction of the wind. The ground coefficient and the noise source parameter are estimated using the measured noise levels of two points under particular environmental condition, and the noise levels of arbitrary points under the same environmental condition can be estimated. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

A probabilistic assessment of ground condition prediction ahead of TBM tunnels combining each geophysical prediction method (TBM 현장에서 막장전방 예측기법 결과의 확률론적 분석을 통한 지반상태 평가)

  • Lee, Kang-Hyun;Seo, Hyung-Joon;Park, Jeongjun;Park, Jinho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.257-272
    • /
    • 2016
  • It is usually not an easy task to counter-measure on time and appropriately when confronting with troubles in mechanized tunnelling job-sites because of the limitation of available spaces to perform those actions with the existence of disk cutter, cutter head, chamber and other various apparatus in Tunnel Boring Machine (TBM). So, it is important to predict the ground condition ahead of a tunnel face during tunnel excavation. Efforts have been made to utilize geophysical methods such as elastic wave survey, electromagnetic wave survey, electrical resistivity survey, etc for predicting the ground condition ahead of the TBM tunnel face. Each prediction method among these geophysical methods has its own advantage and disadvantage. Therefore, it might be needed to apply several geophysical methods rather than just one to predict the ground condition ahead of the tunnel face in the complex and/or mixed grounds since those methods will compensate among others. The problem is that each prediction method will give us different answer on the predicted ground condition; how to combine different solutions into a most reasonable and representative predicted value might be important. Therefore, in this study, we proposed a methodology how to systematically combine each prediction method utilizing probabilistic analysis as well as analytic hierarchy process. The proposed methods is applied to a virtual job site to confirm the applicability of the model to predict the ground condition ahead of the tunnel face in the mechanized tunnelling.

Prediction of Outdoor Sound Propagation under Envrionmental Change (환경변화의 영향을 고려한 소음예측기법)

  • Kim, Dong-Hyun;Han, Sang-Bo;Park, Sung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1865-1870
    • /
    • 2000
  • Sound propagation along the surface of the ground can be affected by the roughness of the ground surface and the direction of the wind. Noise Source parameter and ground factor are estimated using the measured results of two points under particular environmental condition, and the noise level of arbitrary points under the same environmental condition can be estimated. The results can be used for the prediction of the noise level from a source above a plain and homogeneous ground surface with no obstacles nearby. Upward and downward conditions are also addressed in addition to ground effect. The proposed method can be utilized to estimate the noise level of specific noise environment and its validity was confirmed with the results of actual field measurement.

  • PDF

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Development of Back Analysis Program for Total Management Using Observational Method of Earth Retaining Structures under Ground Excavation (지반굴착 흙막이공의 정보화시공 종합관리를 위한 역해석 프로그램 개발)

  • 오정환;조철현;김성재;백영식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10c
    • /
    • pp.103-122
    • /
    • 2001
  • For prediction of ground movement per the excavation step, observational results of ground movement during the construction was very different with prediction during the analysis of design. step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc. however accuratly numerical analysis method was applied. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until present, the measurement system restricted by ‘Absolute Value Management system’only analyzing the stability of present step was executed. So, it was difficult situation to expect the prediction of ground movement for the next excavation step. In this situation, it was developed that ‘The Management system TOMAS-EXCAV’ consisted of ‘Absolute value management system’ analyzing the stability of present step and ‘Prediction management system’ expecting the ground movement of next excavation step and analyzing the stability of next excavation step by‘Back Analysis’. TOMAS-EXCAV could be applied to all uncertainty of earth retaining structures analysis by connecting ‘Forward analysis program’ and ‘Back analysis program’ and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The application of TOMAS-EXCAV was confirmed that verifed the three earth retaing construction field by back analysis.

  • PDF

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

Ground-motion prediction equation for South Korea based on recent earthquake records

  • Jeong, Ki-Hyun;Lee, Han-Seon
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.29-44
    • /
    • 2018
  • A ground-motion prediction equation (GMPE) for the Korean Peninsula, especially for South Korea, is developed based on synthetic ground motions generated using a ground motion model derived from instrumental records from 11 recent earthquakes of $M_L$>4.5 in Korea, including the Gyeongju earthquake of Sept. 12. 2016 ($M_L$5.8). PSAs of one standard deviation from the developed GMPE with $M_W$ 6.5 at hypocentral distances of 15 km and 25 km are compared to the design spectrum (soil condition, $S_B$) of the Korean Building Code 2016 (KBC), indicating that: (1) PSAs at short periods around 0.2 sec can be 1.5 times larger than the corresponding KBC PSA, and (2) SD's at periods longer than 2 sec do not exceed 8 cm. Although this comparison of the design spectrum with those of the GMPE developed herein intends to identify the characteristics of the scenario earthquake in a lower-seismicity region such as South Korea, it does not mean that the current design spectrum should be modified accordingly. To develop a design spectrum compatible with the Korean Peninsula, more systematic research using probabilistic seismic hazard analysis is necessary in the future.

Variation of fisheries conditions of mackerel (Scomber japonicus) fishing ground for large purse seine fisheries (대형선망어업에 있어서 고등어 (Scomber japonicus) 어장의 어황변동)

  • Lee, Haet-Nim;Kim, Hyung-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.47 no.2
    • /
    • pp.108-117
    • /
    • 2011
  • In order to offer data about fisheries resources management and prediction of catch on large purse seine fisheries, the fluctuation of the fisheries condition and distributions of fishing ground for mackerel were analysed with monthly catch data for 1990.2009. The overall catch has decreased to about 70% since 1997, with approximately 70% of the mackerel (Scomber japonicus) catch and monthly fluctuations showing a similar pattern. Monthly distribution of fishing ground is like distribution of mackerel in large purse seine fishery. The main fishing grounds are near Jeju Island and the Yellow sea with the main fishing season existing between October to December. The catches fluctuations and distribution of fishing ground were related to the effect of regime shifts. Therefore, in order to prediction of catch on large purse seine fisheries should be studied these relationships.

Acceleration data and shape change characteristics of a gravity quay wall according to inclination condition grades

  • Su-Kyeong Geum;Jong-Han Lee;Dohyoung Shin;Jiyoung Min
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.591-600
    • /
    • 2024
  • This study investigated the acceleration response and shape change characteristics of a gravity quay wall according to the magnitude of the applied acceleration. The quay wall was defined as a port facility damaged by the Kobe earthquake. Four experimental scenarios were established based on the inclination condition grades, considered to be a significant defect factor in the quay wall. Then, the shaking table test was conducted using scaled-down quay wall models constructed per each scenario. The ground acceleration was gradually increased from the peak ground acceleration (PGA) of 0.1 g to 0.7 g. After each ground acceleration test, acceleration installed on the wall and backfill ground and inclination on the top of the wall were measured to assess the amplification of peak response acceleration and maximum response amplitude and the change in the inclination of the quay wall. This study also analyzed the separation of the quay wall from the backfill and the crack pattern of the backfill ground according to PGA values and inclination condition grades. The result of this study shows that response acceleration could provide a reasonable prediction for the changes in the inclination of the quay wall and the crack generation and propagation on the backfill from a current inclination condition grade.