• Title/Summary/Keyword: Prediction of Traffic Volume

Search Result 108, Processing Time 0.025 seconds

Prediction and analysis of noise level of outdoor areas in roadside apartment complexes (도로변 아파트 단지 옥외공간의 소음도 예측 및 분석)

  • Shin, Hye-Kyung;Yang, Hong-Seok;Kim, Myung-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.885-887
    • /
    • 2014
  • Outdoor spaces in an apartment complex have been enlarged by the increased underground car parking. It has become accepted as important place for acoustic comfort of resident. This paper attempts to determine the noise exposure to the outdoor area in 21 apartment complexes built within 5 years. The results showed that the average noise level of outdoor area ranged from 37.6dB(A) to 67.2dB(A). And the percentage of areas below the noise level of 55dB(A) range 0.1% to 95.0%. The analysis on correlations shows that the traffic volume and building coverage have significant effects on noise level.

  • PDF

A Study on the Application of Accident Severity Prediction Model (교통사고 심각도 예측 모형의 활용방안에 관한 연구 (서해안 고속도로를 중심으로))

  • Won, Min-Su;Lee, Gyeo-Ra;O, Cheol;Gang, Gyeong-U
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.4
    • /
    • pp.167-173
    • /
    • 2009
  • It is important to study on the traffic accident severity reduction because traffic accident is an issue that is directly related to human life. Therefore, this research developed countermeasure to reduce traffic accident severity considering various factors that affect the accident severity. This research developed the Accident Severity Prediction Model using the collected accident data from Seohaean Expressway in 2004~2006. Through this model, we can find the influence factors and methodology to reduce accident severity. The results show that speed limit violation, vehicle defects, vehicle to vehicle accident, vehicle to person accident, traffic volume, curve radius CV(Coefficient of variation) and vertical slope CV were selected to compose the accident severity model. These are certain causes of the severe accident. The accidents by these certain causes present specific sections of Seohaean Expressway. The results indicate that we can prevent severe accidents by providing selected traffic information and facilities to drivers at specific sections of the Expressway.

Effects of Road and Traffic Characteristics on Roadside Air Pollution (도로환경요인이 도로변 대기오염에 미치는 영향분석)

  • Jo, Hye-Jin;Choe, Dong-Yong
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.6
    • /
    • pp.139-146
    • /
    • 2009
  • While air pollutants emission caused by the traffic is one of the major sources, few researches have done. This study investigated the extent to which traffic and road related characteristics such as traffic volumes, speeds and road weather data including wind speed, temperature and humidity, as well as the road geometry affect the air pollutant emission. We collected the real time air pollutant emission data from Seoul automatic stations and real time traffic volume counts as well as the road geometry. The regression air pollutant emission models were estimated. The results show followings. First, the more traffic volume increase, the more pollutant emission increase. The more vehicle speed increase, the more measurement quantity of pollutant decrease. Secondly, as the wind speed, temperature, and humidity increase, the amount of air pollutant is likely to decrease. Thirdly, the figure of intersections affects air pollutant emission. To verify the estimated models, we compared the estimates of the air pollutant emission with the real emission data. The result show the estimated results of Chunggae 4 station has the most reliable data compared with the others. This study is differentiated in the way the model used the real time air pollutant emission data and real time traffic data as well as the road geometry to explain the effects of the traffic and road characteristics on air quality.

Construction of Speed Predictive Models on Freeway Ramp Junctions with 70mph Speed Limit. (70mph 제한속도를 갖는 고속도로 연결로 접속부상에서의 속도추정모형에 관한 연구)

  • 김승길;김태곤
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.111-121
    • /
    • 1999
  • From the traffic analyses, and model constructions and verifications for speed prediction on the freeway ramp junctions with 70mph speed limit, the following results obtained: ⅰ) The traffic flow distribution showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period when compared with the afternoon peak period. ⅱ) The occupancy distribution was also shown to be varied by a big difference depending on the time periods. Especially, the occupancy in the morning peak period showed over 100% increase when compared with the 24hours average occupancy, and the occupancy in the afternoon peak period over 25% increase when compared with the same occupancy.ⅲ) The speed distribution was not shown to have a big difference depending on the time periods. Especially, the speed in the morning peak period shown 10mph decrease when compared with the 24hours' average speed, but the speed did not show a big difference in the afternoon peak period.ⅳ) The analyses of variance showed a high explanatory power between the speed predictive models(SPM) constructed and the variables used, especially the upstream speed. ⅴ) The analysis of correlation for verifying the speed predictive models(SPM) constructed on the ramp junctions were shown to have a high correlation between observed data and predicted data. Especially, the correlation coefficients showed over 0.95 excluding the unstable condition on the diverge sectionⅵ) Speed predictive models constructed were shown to have the better results than the HCM models, even if the speed limits on the freeway were different between the HCM models and speed predictive models constructed.

Construction of Speed Predictive Models on Freeway Ramp Junctions with 70mph Speed Limit (70mph 제한속도를 갖는 고속도로 연결로 접속부상에서의 속도추정모형에 관한 연구)

  • 김승길;김태곤
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.66-75
    • /
    • 2000
  • From the traffic analysis, and model constructions and verifications for speed prediction on the freeway ramp junctions with 70mph speed limit, the following results were obtained : ⅰ) The traffic flow distribution showed a big difference depending on the time periods. Especially, more traffic flows were concentrated on the freeway junctions in the morning peak period when compared with the afternoon peak period. ⅱ) The occupancy distribution was also shown to be varied by a big difference depending on the time periods. Especially, the occupancy in the morning peak period showed over 100% increase when compared with the 24hours average occupancy, and the occupancy in the afternoon peak period over 25% increase when compared with the same occupancy. ⅲ) The speed distribution was not shown to have a big difference depending on the time periods. Especially, the speed in the morning peak period showed 10mph decrease when compared with the 24hours'average speed, but the speed did not show a big difference in the afternoon peak period. ⅳ) The analyses of variance showed a high explanatory power between the speed predictive models(SPM) constructed and the variables used, especially the upstream speed. ⅴ) The analysis of correlation for verifying the speed predictive models(SPM) constructed on the ramp junctions were shown to have a high correlation between observed data and predicted data. Especially, the correlation coefficients showed over 0.95 excluding the unstable condition on the diverge section. ⅵ) Speed predictive models constructed were shown to have the better results than the HCM models, even if the speed limits on the freeway were different between the HCM models and speed predictive models constructed.

  • PDF

Guidelines for Data Construction when Estimating Traffic Volume based on Artificial Intelligence using Drone Images (드론영상과 인공지능 기반 교통량 추정을 위한 데이터 구축 가이드라인 도출 연구)

  • Han, Dongkwon;Kim, Doopyo;Kim, Sungbo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.147-157
    • /
    • 2022
  • Recently, many studies have been conducted to analyze traffic or object recognition that classifies vehicles through artificial intelligence-based prediction models using CCTV (Closed Circuit TeleVision)or drone images. In order to develop an object recognition deep learning model for accurate traffic estimation, systematic data construction is required, and related standardized guidelines are insufficient. In this study, previous studies were analyzed to derive guidelines for establishing artificial intelligence-based training data for traffic estimation using drone images, and business reports or training data for artificial intelligence and quality management guidelines were referenced. The guidelines for data construction are divided into data acquisition, preprocessing, and validation, and guidelines for notice and evaluation index for each item are presented. The guidelines for data construction aims to provide assistance in the development of a robust and generalized artificial intelligence model in analyzing the estimation of road traffic based on drone image artificial intelligence.

Aviation Safety Mandatory Report Topic Prediction Model using Latent Dirichlet Allocation (LDA) (잠재 디리클레 할당(LDA)을 이용한 항공안전 의무보고 토픽 예측 모형)

  • Jun Hwan Kim;Hyunjin Paek;Sungjin Jeon;Young Jae Choi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.3
    • /
    • pp.42-49
    • /
    • 2023
  • Not only in aviation industry but also in other industries, safety data plays a key role to improve the level of safety performance. By analyzing safety data such as aviation safety report (text data), hazard can be identified and removed before it leads to a tragic accident. However, pre-processing of raw data (or natural language data) collected from each site should be carried out first to utilize proactive or predictive safety management system. As air traffic volume increases, the amount of data accumulated is also on the rise. Accordingly, there are clear limitation in analyzing data directly by manpower. In this paper, a topic prediction model for aviation safety mandatory report is proposed. In addition, the prediction accuracy of the proposed model was also verified using actual aviation safety mandatory report data. This research model is meaningful in that it not only effectively supports the current aviation safety mandatory report analysis work, but also can be applied to various data produced in the aviation safety field in the future.

Study on Predicting Changes in Traffic Demand in Surrounding SOCs Due to Road SOC Construction Using Big Data - Centered Around the Connecting Road between Incheon Yeongjong International City and Cheongna International City (3rd Bridge) - (빅데이터를 활용한 도로 SOC건설에 따른 주변 SOC 교통수요 변화 예측 연구 - 인천 영종국제도시~청라국제도시 간 연결도로(제3연륙교)를 중심으로 -)

  • Byoung-Jo Yoon;Sang-Hun Kang;Seong-Jin Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.705-713
    • /
    • 2024
  • Purpose: Currently, the only routes that enter Yeongjong Island are Yeongjong Bridge and Incheon Bridge, which are private roads. The purpose of this study is to predict and study changes in transportation demand for new routes and two existing routes according to the plan to open the 3rd Bridge, a new route, in December 2025. Method: The basic data for traffic demand forecast were O/D and NETWORK data from 2021.08, KOTI. In order to examine the reliable impact of Yeongjong Bridge and Incheon Bridge on the opening of the 3rd Bridge, it is necessary to correct the traffic distribution of Yeongjong Island and Incheon International Airport to suit reality, and in this study, the trip distribution by region was corrected and applied using Mobile Big Data. Result: As of 2026, the scheduled year of the opening of the 3rd Bridge, two alternatives, Alternative 1 (2,000 won) and Alternative 2 (4,000 won), were established and future transportation demand analysis was conducted, In the case of Alternative 1, which is similar to the existing private road toll restructuring, the traffic volume of the 3rd Bridge was predicted to be 42,836 out of 199,101 veh/day in the Yeongjong area in 2026, and the traffic volume reduction rate of the existing road was analyzed as 21.5%. Conlclusion: As a result of the review (based on Alternative 1), the proportion of convertted traffic on the 3rd Yanji Bridge was estimated to be 70% of Yeongjong Bridge and 30% of Incheon Bridge, and 21.5% of the predicted traffic reduction on the existing road when the 3rd Yanji Bridge was opened is considered appropriate considering the results of the case review and changes in conditions. It is judged that it is a way to secure the reliability of the prediction of traffic demand because communication big data is used to reflect more realistic traffic distribution when predicting future traffic demand.

Development of a Traffic Accident Prediction Model and Determination of the Risk Level at Signalized Intersection (신호교차로에서의 사고예측모형개발 및 위험수준결정 연구)

  • 홍정열;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.155-166
    • /
    • 2002
  • Since 1990s. there has been an increasing number of traffic accidents at intersection. which requires more urgent measures to insure safety on intersection. This study set out to analyze the road conditions, traffic conditions and traffic operation conditions on signalized intersection. to identify the elements that would impose obstructions in safety, and to develop a traffic accident prediction model to evaluate the safety of an intersection using the cop relation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on the intersection in developing a traffic accident prediction model fir a signalized intersection. The data for the study was collected at an intersection located in Wonju city from January to December 2001. It consisted of the number of accidents, the road conditions, the traffic conditions, and the traffic operation conditions at the intersection. The collected data was first statistically analyzed and then the results identified the elements that had close correlations with accidents. They included the area pattern, the use of land, the bus stopping activities, the parking and stopping activities on the road, the total volume, the turning volume, the number of lanes, the width of the road, the intersection area, the cycle, the sight distance, and the turning radius. These elements were used in the second correlation analysis. The significant level was 95% or higher in all of them. There were few correlations between independent variables. The variables that affected the accident rate were the number of lanes, the turning radius, the sight distance and the cycle, which were used to develop a traffic accident prediction model formula considering their distribution. The model formula was compared with a general linear regression model in accuracy. In addition, the statistics of domestic accidents were investigated to analyze the distribution of the accidents and to classify intersections according to the risk level. Finally, the results were applied to the Spearman-rank correlation coefficient to see if the model was appropriate. As a result, the coefficient of determination was highly significant with the value of 0.985 and the ranks among the intersections according to the risk level were appropriate too. The actual number of accidents and the predicted ones were compared in terms of the risk level and they were about the same in the risk level for 80% of the intersections.

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.