In the Korean domestic nuclear industry, to analyze the reliability of instrumentation and control (I&C) systems, the failure rates of the electronic components constituting the I&C systems are predicted based on the MIL-HDBK-217F standard titled 'Reliability Prediction of Electronic Equipment'. Based on these predicted failure rates, the mean time to failure of the I&C systems is calculated to determine the replacement period of the I&C systems. However, this conventional approach to the prediction of electronic component failure rates assumes that factors affecting the failure rates such as ambient temperature and operating voltage are static constants. In this regard, the objective of this study is to propose a prediction method for the remaining useful life (RUL) of electronic components considering mean time to failure calculations reflecting dynamic environments, such as changes in ambient temperature and operating voltage. Results of this study show that the RUL of electronic components can be estimated depending on time-varying temperature and electrical stress, implying that the RUL of electronic components can be predicted under dynamic stress conditions.
Duty cycle is determined as the ratio of operating time to total time. Duty cycle in reliability prediction is one of the significant factors to be considered. In duty cycle application, non-operating time failure rate has been easily ignored even though the failure rate in non-operating period has not been proved to be small enough. Ignorance of non-operating time failure rate can result in over-estimated system reliability calculation. Furthermore, utilization of duty cycle in reliability prediction has not been evaluated in its effectiveness. In order to address these problems, two reliability models, such as MIL-HDBK-217F and RIAC-HDBK-217Plus, were used to analyze non-operating time failure rate. This research has proved that applying duty cycle in 217F model is not reasonable by the quantitative comparison and analysis.
Reliability analysis and prediction of next failure time is critical to sustain weapon systems, concerning scheduled maintenance, spare parts replacement and maintenance interventions, etc. Since 1981, many methodology derived from various probabilistic and statistical theories has been suggested to do that activity. Nowadays, many A.I. tools have been used to support these predictions. Support Vector Regression(SVR) is a nonlinear regression technique extended from support vector machine. SVR can fit data flexibly and it has a wide variety of applications. This paper utilizes SVM and SVR with combining time series to predict the next failure time based on historical failure data. A numerical case using failure data from the military equipment is presented to demonstrate the performance of the proposed approach. Finally, the proposed approach is proved meaningful to predict next failure point and to estimate instantaneous failure rate and MTBF.
In this paper, we compares the business failure prediction accuracy among Linear Programming Discriminant Analysis(LPDA) model, Multivariate Discriminant Analysis (MDA) model and logit analysis model. The Data for 417 companies analyzed were gathered from KIS-FAS Published by Korea Information Service in 1999. The result of comparison for four time horizons shows that LPDA Is advantageous in prediction accuracy over the other two models when over all tilt ratio and business failure accuracy are considered simultaneously.
In these days, the reliability analysis and prediction are applied for many industrial products and many products require guaranteeing the quality and efficiency of their products. In this study reliability prediction for core units of machine tools has been performed in order to improve and analyze its reliability. ATC(Automatic Tool Changer) and interface Card of PC-NC that are core component of the machine tools were chosen as the target of the reliability prediction. A reliability analysis tool was used to obtain the reliability data(failure rate database) for reliability prediction. It is expected that the results of reliability prediction be applied to improve and evaluate its reliability. Failure rate, MTBF (Mean Time Between Failure) and reliability for core units of machine tools were evaluated and analyzed in this study.
소프트웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나. 단조증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간 절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구 하였다. 곡선회귀모형에 이용되는 S곡선모형과 성장모형, 로지스틱을 이용하여 미래고장 시간을 예측하여 비교 하였다. 제안된 예측방법에서는 고장시간 자료를 이용하여 모형들에 대한 예측 값을 결정계수 와 평균제곱오차를 이용하여 비교 하고 효율적 모형을 선택 하였다.
The failure of material structures or mechanical system is considered as a direct or indirect result of fatigue. In the design of mechanical structure for estimating of reliability, the prediction of failure life is the most important failure mode to be considered. However, because of a complicated behavior of fatigue in mechanical structure, the analysis of fatigue is in need of much researches on life prediction. This document presents a prediction of fatigue life of the SAPH45 steel, which is extensively for vehicle frame. The method using lethargy coefficient and stress distribution factor at pediction of fatigue life based on the consideration of the failure characteristics from the tensile test should be provided in this study.
The reliability prediction and evaluation for general electronic components are required to guarantee in quality and in efficiency. Although many methodologies for predicting the reliability of electronic components have been developed, their reliability might be subjective according to a particular set of circumstances, and therefore it is not easy to quantify their reliability. In this study reliability prediction of electronic components, that is the interface card, which is used in the CNC(Computerized Numerical Controller) of machine tools, was carried out using PRISM reliability prediction specification. Reliability performances such as MTBF(Mean Time Between Failure), failure rate and reliability were obtained, and the variation of failure rate for electronic components according to temperature change was predicted. The results obtained from this study are useful information to consider a counter plan for weak components before they are used.
In this paper we study on a method to predict and to demonstrate the reliability of the Korea high speed train control system in quantitative point of view. For the prediction of the reliability in train control system which is composed of electronic parts, Relax Software 7.7 automation tool is employed and MIL-HDBK-217 Handbook that is a standard for the prediction of the failure rate in electronic components is used. Mean Time Between Failure (MTBF) is predicted based on the failure rate of the subsystems, State Modeling and Markov Modeling method is used to express a reliability function of the train control system composed by hardware redundancy as a function of time. We propose a Reliability Test which is performed on the level of the subsystems and Failure Report, Analysing, Correction action system which use the test operation data to prove the predicted reliability.
There have been a lot of studies in the past for the method of predicting the failure of a machine, and recently, a lot of researches and applications have been generated to diagnose the physical condition of the machine and the parts and to calculate the remaining life through various methods. Survival models are also used to predict plant failures based on past anomaly cycles. In particular, special machine that reflect the fluid flow and process characteristics of chemical plants are connected to hundreds or thousands of sensors, so there are not many factors that need to be considered, such as process and material data as well as application of derivative variables. In this paper, the data were preprocessed through time series anomaly detection based on unsupervised learning to predict the abnormalities of these special machine. Next, clustering results reflecting clustering-based data characteristics were applied to produce additional variables, and a learning data set was created based on the history of past facility abnormalities. Finally, the prediction methodology based on the supervised learning algorithm was applied, and the model update was confirmed to improve the accuracy of the prediction of facility failure. Through this, it is expected to improve the efficiency of facility operation by flexibly replacing the maintenance time and parts supply and demand by predicting abnormalities of machine and extracting key factors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.