Yield prediction is one of the most important issues in semiconductor manufacturing. Especially, for a fast-changing environment of the semiconductor industry, accurate and reliable prediction techniques are required. In this study, we propose a prediction model to predict wafer yield based on virtual metrology process parameters in semiconductor manufacturing. The proposed prediction model addresses imbalance problems frequently encountered in semiconductor processes so as to construct reliable prediction model. The effectiveness and applicability of the proposed procedure was demonstrated through a real data from a leading semiconductor industry in South Korea.
The yield of semiconductor chips is dependent not only on the average defect density but also on the distribution of defects over a wafer. The distribution of defects leads to consider a cluster index. This paper briefly reviews the existing yield prediction models ad proposes a new cluster index, which utilizes the information about the defect location on a wafer in terms of the coefficient of variation. An extensive simulation is performed under a variety of defect distributions and a yield prediction model is derived through the regression analysis to relate the yield with the proposed cluster index and the average number of defects per chip. The performance of the proposed simulation-based yield prediction model is compared with that of the well-known negative binomial model.
이 연구의 목적은 random forest 를 활용하여 기상요소만을 이용하여 우리나라 전체의 벼 평균수량을 예측하는데 있다. Random forest 는 예측에 사용되는 각 predictor variable 을 분리할 수 있는데 이를 통해 분리된 시계열 상의 추세가 비정상적인 증가형태를 보였다. 이는 결국 예측능력의 저하로 이어지기 때문에 이를 제거할 필요가 있고 본 연구에서는 이동 평균을 이용하여 제거한 후 예측을 하였다. 1991 년부터 2005 년까지의 기상자료와 수량자료를 학습에 사용하였고 2006 년부터 2015 년까지의 자료들을 검증용으로 사용하였다. 학습자료에 대해서는 상당히 정확한 예측 능력을 보여주었으나 검증 자료에서는 그렇지 못하였다. 그 이유를 분석하기 위해 학습 자료와 검증자료에 대해서 각각 변수 중요도를 산출하여 비교한 결과 두 자료 간에 월별 기상 자료에 대한 중요도가 변동되었음을 발견하였다. 이러하 차이가 발생한 이유는 학습자료와 검증 자료에서의 전국적으로 표준이앙기가 이동하여 벼의 생육기간 자체가 변하였기 때문이다. 따라서, 정확한 예측을 위해서는 지역별 파종기 또는 이앙기에 대한 자료가 필요하며 단순히 기상 자료만을 활용한 예측은 어려운 것으로 생긱된다.
Prediction of rice yield during a growing season would be very helpful to magnify rice yield as it also allows better farm practices to maximize yield with greater profit and lesser costs. UAV imagery based automatic detection of rice can be a relevant solution for early prediction of yield. So, we propose an image processing technique to predict rice yield using low altitude UAV images. We proposed $L^*a^*b^*$ color space based image segmentation algorithm. All images were captured using UAV mounted RGB camera. The proposed algorithm was developed to find out rice grain area from the image background. We took RGB image and applied filter to remove noise and converted RGB image to $L^*a^*b^*$ color space. All color information contain in both $a^*$ and $b^*$ layers and by using k-mean clustering classification of these colors were executed. Variation between two colors can be measured and labelling of pixels was completed by cluster index. Image was finally segmented using color. The proposed method showed that rice grain could be segmented and we can recognize rice grains from the UAV images. We can analyze grain areas and by estimating area and volume we could predict rice yield.
Food policy is considered as the most basic and central issue for all countries, while making efforts to keep each country's food sovereignty and enhance food self-sufficiency. In the case of Korea where the staple food is rice, the rice yield prediction is regarded as a very important task to cope with unstable food supply at a national level. In this study, Korean paddy Rice yield Prediction Model (KRPM) developed to predict the paddy rice yield using meteorological element and MODIS NDVI. A multiple linear regression analysis was carried out by using the NDVI extracted from satellite image. Six meteorological elements include average temperature; maximum temperature; minimum temperature; rainfall; accumulated rainfall and duration of sunshine. Concerning the evaluation for the applicability of the KRPM, the accuracy assessment was carried out through correlation analysis between predicted and provided data by the National Statistical Office of paddy rice yield in 2011. The 2011 predicted yield of paddy rice by KRPM was 505 kg/10a at whole country level and 487 kg/10a by agroclimatic zones using stepwise regression while the predicted value by KOrea Statistical Information Service was 532 kg/10a. The characteristics of changes in paddy rice yield according to NDVI and other meteorological elements were well reflected by the KRPM.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권5호
/
pp.1414-1430
/
2022
Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.
International journal of advanced smart convergence
/
제13권3호
/
pp.335-344
/
2024
This study explores advanced machine learning techniques for improving crop yield prediction in smart farming, utilizing multi-temporal spectral data from drone-based multispectral imagery. Conducted in garlic orchards in Andong, Gyeongbuk Province, South Korea, the research examines the effectiveness of various vegetation indices and cutting-edge models, including LSTM, CNN, Random Forest, and XGBoost. By integrating these models with the Analytic Hierarchy Process (AHP), the study systematically evaluates the factors that influence prediction accuracy. The integrated approach significantly outperforms single models, offering a more comprehensive and adaptable framework for yield prediction. This research contributes to precision agriculture by providing a robust, AI-driven methodology that enhances the sustainability and efficiency of farming practices.
The study was conducted to determine if variation in protein yield can be explained by expressions of early lactation somatic cell score (SCS) and if prediction can be improved by including SCS among the predictors. A data set was prepared (n = 663,438) from Wisconsin Dairy Improvement Association (USA) records for protein yield with sample days near 20. Stepwise regression was used requiring F statistic (p < .01) for any variable to stay in the model. Separate analyses were run for 12 combinations of four seasons and first three parities. Selection of SCS variables was not consistent across seasons or lactations. Coefficients of detennination ($R^2$) ranged from 51 to 61% with higher values for earlier lactations. Including any expression of SCS in the prediction equations improved $R^2$ by < 1 %. SCS was associated with milk yield on the sample day, but the association was not strong enough to improve the prediction of future yield when other expressions of milk yield were in the model.
Neural network based models were developed and evaluated for predicting corn yield from aerial images based on 1998 and 1994 image data. The model used images in multi-spectral bands such as R, G, B, and IR (Red, Green, Blue and Infrared). The inputs to the neural network consisted of mean and standard deviation of multispectral bands of the aerial images. Performances of several neural network architectures using back-propagation with momentum were compared. The maximum yield prediction accuracy obtained was 97.81%. The BPNN model prediction accuracy could be enhanced by using more number of observations to the model, other data transformation techniques, or by performing optical calibration of the aerial image.
최근 딥러닝 기술을 활용하여 작물 생산량 예측 연구가 많이 진행되고 있다. 딥러닝 알고리즘은 입력 데이터 세트와 작물 예측 결과에 대한 선형 맵을 구성하는데 어려움이 있다. 또한, 알고리즘 구현은 획득한 속성의 비율에 긍정적으로 의존한다. 심층강화학습을 작물 생산량 예측 응용에 적용한다면 이러한 한계점을 보완할 수 있다. 본 논문은 작물 생산량 예측을 개선하기 위해 DQN, Double DQN 및 Dueling DQN 의 성능을 분석한다. DQN 알고리즘은 과대 평가 문제가 제기되지만, Double DQN은 과대 평가를 줄이고 더 나은 결과를 얻을 수 있다. 본 논문에서 제안된 모델은 거짓 판정을 줄이고 예측 정확도를 높이는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.