• Title/Summary/Keyword: Prediction Uncertainty

Search Result 425, Processing Time 0.028 seconds

Use of uncertain numbers for appraising tensile strength of concrete

  • Tutmez, Bulent;Cengiz, A. Kemal;Sarici, Didem Eren
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.447-458
    • /
    • 2013
  • Splitting tensile strength (STS) is a respectable mechanical property reflecting ability of the concrete. The STS of concrete is mainly related to compressive strength (CS), water/binder (W/B) ratio and concrete age. In this study, the assessment of STS is made by a novel uncertainty-oriented method which uses least square optimization and then predicts STS of concrete by uncertain (fuzzy) numbers. The approximation method addresses a novel integration of fuzzy set theory and multivariate statistics. The numerical examples showed that the method is applicable with relatively limited data. In addition, the prediction of uncertainty at various levels of possibility can be described. In conclusion, the uncertainty-oriented interval analysis can be suggested an effective tool for appraising the uncertainties in concrete technology.

The Prediction of Compressive Strength of Sedimentary Rock using the Artificial Neural Networks (인공신경망을 이용한 퇴적암의 압축강도 예측)

  • Lee, Sang-Ho;Kim, Dong-Rak;Seo, In-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.43-47
    • /
    • 2012
  • A evaluation for the strength of rock includes a lot of uncertainty due to existence of discontinuity surface and weakness plain in the rock mass, so essential test results and other data for the resonable strength analysis are absolutely insufficient. Therefore, a analytical technique to reduce such uncertainty can be required. A probabilistic analysis technique has mainly to make up for the uncertainty to investigate the strength of rock mass. Recently, a artificial neural networks, as a more newly analysis method to solve several problems in the existing analysis methodology, trends to apply to study on the rock strength. In this study the unconfined compressive strength from basic physical property values of sedimentary rock, black shale and red shale, distributed in Daegu metropolitan area is estimated, using the artificial neural networks. And the applicability of the analysis method is investigated. From the results, it is confirmed that the unconfined compressive strength of the sedimentary rock can be easily and efficiently predicted by the analysis technique with the artificial neural networks.

Spatial Prediction of Soil Carbon Using Terrain Analysis in a Steep Mountainous Area and the Associated Uncertainties (지형분석을 이용한 산지토양 탄소의 분포 예측과 불확실성)

  • Jeong, Gwanyong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Soil carbon(C) is an essential property for characterizing soil quality. Understanding spatial patterns of soil C is particularly limited for mountain areas. This study aims to predict the spatial pattern of soil C using terrain analysis in a steep mountainous area. Specifically, model performances and prediction uncertainties were investigated based on the number of resampling repetitions. Further, important predictors for soil C were also identified. Finally, the spatial distribution of uncertainty was analyzed. A total of 91 soil samples were collected via conditioned latin hypercube sampling and a digital soil C map was developed using support vector regression which is one of the powerful machine learning methods. Results showed that there were no distinct differences of model performances depending on the number of repetitions except for 10-fold cross validation. For soil C, elevation and surface curvature were selected as important predictors by recursive feature elimination. Soil C showed higher values in higher elevation and concave slopes. The spatial pattern of soil C might possibly reflect lateral movement of water and materials along the surface configuration of the study area. The higher values of uncertainty in higher elevation and concave slopes might be related to geomorphological characteristics of the research area and the sampling design. This study is believed to provide a better understanding of the relationship between geomorphology and soil C in the mountainous ecosystem.

Uncertainty Analysis for the Propeller Open Water Test (프로펠러 단독시험에 있어서 불확실성 해석)

  • G.I. Choi;H.H. Chun;J.S. Kim;C.M. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.71-83
    • /
    • 1994
  • Recently, an interest in the uncertainty analysis on measurement and prediction has been growing. An uncertainty analysis method is applied to the P.O.W test where error sources, estimated errors, their propagation route and their sensitivities to the uncertainty items are clearly illustrated. The uncertainty range for the results obtained from the HMRI Propeller Open Water test is within ${\pm}1%$ which is assumed to be lower than an usual measurement error range of ${\pm}1%$. It has been noticed that the uncertainty analysis can be used quite usefully for detecting dominant error-sources and hence improving the experimental measurement accuracy.

  • PDF

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Application of particle filtering for prognostics with measurement uncertainty in nuclear power plants

  • Kim, Gibeom;Kim, Hyeonmin;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1314-1323
    • /
    • 2018
  • For nuclear power plants (NPPs) to have long lifetimes, ageing is a major issue. Currently, ageing management for NPP systems is based on correlations built from generic experimental data. However, each system has its own characteristics, operational history, and environment. To account for this, it is possible to resort to prognostics that predicts the future state and time to failure (TTF) of the target system by updating the generic correlation with specific information of the target system. In this paper, we present an application of particle filtering for the prediction of degradation in steam generator tubes. With a case study, we also show how the prediction results vary depending on the uncertainty of the measurement data.

Study on the influence of structural and ground motion uncertainties on the failure mechanism of transmission towers

  • Zhaoyang Fu;Li Tian;Xianchao Luo;Haiyang Pan;Juncai Liu;Chuncheng Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.311-326
    • /
    • 2024
  • Transmission tower structures are particularly susceptible to damage and even collapse under strong seismic ground motions. Conventional seismic analyses of transmission towers are usually performed by considering only ground motion uncertainty while ignoring structural uncertainty; consequently, the performance evaluation and failure prediction may be inaccurate. In this context, the present study numerically investigates the seismic responses and failure mechanism of transmission towers by considering multiple sources of uncertainty. To this end, an existing transmission tower is chosen, and the corresponding three-dimensional finite element model is created in ABAQUS software. Sensitivity analysis is carried out to identify the relative importance of the uncertain parameters in the seismic responses of transmission towers. The numerical results indicate that the impacts of the structural damping ratio, elastic modulus and yield strength on the seismic responses of the transmission tower are relatively large. Subsequently, a set of 20 uncertainty models are established based on random samples of various parameter combinations generated by the Latin hypercube sampling (LHS) method. An uncertainty analysis is performed for these uncertainty models to clarify the impacts of uncertain structural factors on the seismic responses and failure mechanism (ultimate bearing capacity and failure path). The numerical results show that structural uncertainty has a significant influence on the seismic responses and failure mechanism of transmission towers; different possible failure paths exist for the uncertainty models, whereas only one exists for the deterministic model, and the ultimate bearing capacity of transmission towers is more sensitive to the variation in material parameters than that in geometrical parameters. This research is expected to provide an in-depth understanding of the influence of structural uncertainty on the seismic demand assessment of transmission towers.

Back Analysis of Tunnel for multi-step Construction (시공 단계를 고려한 터널의 역해석에 관한 연구)

  • 김선명;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.479-484
    • /
    • 2000
  • The reliable estimation of the system parameters and the accurate prediction of the system behavior are important to design tunnel safely and economically. Therefore, the back analysis using the field measurements data is useful to evaluate the geotechnical parameter for tunnel. In the back analysis method, the selection of initial value and uncertainty of field measurements influence significantly on the analysis result. In this paper, to overcome uncertainty of field measurements, we performed the back analysis using the displacement data gained at each step of excavation and support.

  • PDF

A Climate Prediction Method Based on EMD and Ensemble Prediction Technique

  • Bi, Shuoben;Bi, Shengjie;Chen, Xuan;Ji, Han;Lu, Ying
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.611-622
    • /
    • 2018
  • Observed climate data are processed under the assumption that their time series are stationary, as in multi-step temperature and precipitation prediction, which usually leads to low prediction accuracy. If a climate system model is based on a single prediction model, the prediction results contain significant uncertainty. In order to overcome this drawback, this study uses a method that integrates ensemble prediction and a stepwise regression model based on a mean-valued generation function. In addition, it utilizes empirical mode decomposition (EMD), which is a new method of handling time series. First, a non-stationary time series is decomposed into a series of intrinsic mode functions (IMFs), which are stationary and multi-scale. Then, a different prediction model is constructed for each component of the IMF using numerical ensemble prediction combined with stepwise regression analysis. Finally, the results are fit to a linear regression model, and a short-term climate prediction system is established using the Visual Studio development platform. The model is validated using temperature data from February 1957 to 2005 from 88 weather stations in Guangxi, China. The results show that compared to single-model prediction methods, the EMD and ensemble prediction model is more effective for forecasting climate change and abrupt climate shifts when using historical data for multi-step prediction.

Predictive Model for Evaluating Startup Technology Efficiency: A Data Envelopment Analysis (DEA) Approach Focusing on Companies Selected by TIPS, a Private-led Technology Startup Support Program

  • Jeongho Kim;Hyunmin Park;JooHee Oh
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.167-179
    • /
    • 2024
  • This study addresses the challenge of objectively evaluating the performance of early-stage startups amidst limited information and uncertainty. Focusing on companies selected by TIPS, a leading private sector-driven startup support policy in Korea, the research develops a new indicator to assess technological efficiency. By analyzing various input and output variables collected from Crunchbase and KIND (Korea Investor's Network for Disclosure System) databases, including technology use metrics, patents, and Crunchbase rankings, the study derives technological efficiency for TIPS-selected startups. A prediction model is then developed utilizing machine learning techniques such as Random Forest and boosting (XGBoost) to classify startups into efficiency percentiles (10th, 30th, and 50th). The results indicate that prediction accuracy improves with higher percentiles based on the technical efficiency index, providing valuable insights for evaluating and predicting startup performance in early markets characterized by information scarcity and uncertainty. Future research directions should focus on assessing growth potential and sustainability using the developed classification and prediction models, aiding investors in making data-driven investment decisions and contributing to the development of the early startup ecosystem.