• Title/Summary/Keyword: Prediction Uncertainty

검색결과 428건 처리시간 0.029초

Uncertainty Analysis based on LENS-GRM

  • Lee, Sang Hyup;Seong, Yeon Jeong;Park, KiDoo;Jung, Young Hun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.208-208
    • /
    • 2022
  • Recently, the frequency of abnormal weather due to complex factors such as global warming is increasing frequently. From the past rainfall patterns, it is evident that climate change is causing irregular rainfall patterns. This phenomenon causes difficulty in predicting rainfall and makes it difficult to prevent and cope with natural disasters, casuing human and property damages. Therefore, accurate rainfall estimation and rainfall occurrence time prediction could be one of the ways to prevent and mitigate damage caused by flood and drought disasters. However, rainfall prediction has a lot of uncertainty, so it is necessary to understand and reduce this uncertainty. In addition, when accurate rainfall prediction is applied to the rainfall-runoff model, the accuracy of the runoff prediction can be improved. In this regard, this study aims to increase the reliability of rainfall prediction by analyzing the uncertainty of the Korean rainfall ensemble prediction data and the outflow analysis model using the Limited Area ENsemble (LENS) and the Grid based Rainfall-runoff Model (GRM) models. First, the possibility of improving rainfall prediction ability is reviewed using the QM (Quantile Mapping) technique among the bias correction techniques. Then, the GRM parameter calibration was performed twice, and the likelihood-parameter applicability evaluation and uncertainty analysis were performed using R2, NSE, PBIAS, and Log-normal. The rainfall prediction data were applied to the rainfall-runoff model and evaluated before and after calibration. It is expected that more reliable flood prediction will be possible by reducing uncertainty in rainfall ensemble data when applying to the runoff model in selecting behavioral models for user uncertainty analysis. Also, it can be used as a basis of flood prediction research by integrating other parameters such as geological characteristics and rainfall events.

  • PDF

앙상블 유량예측기법의 불확실성 평가 (Uncertainty assessment of ensemble streamflow prediction method)

  • 김선호;강신욱;배덕효
    • 한국수자원학회논문집
    • /
    • 제51권6호
    • /
    • pp.523-533
    • /
    • 2018
  • 본 연구에서는 충주댐 유역에 대해 앙상블 유량예측기법의 강우-유출 모델 매개변수, 입력자료에 따른 불확실성 분석을 수행하였다. 앙상블 유량예측기법으로는 ESP (Ensemble Streamflow Prediction) 기법과 BAYES-ESP (Bayesian-ESP) 기법을 활용하였으며, 강우-유출 모델로는 ABCD를 활용하였다. 모델 매개변수에 따른 불확실성 분석은 GLUE (Generalized Likelihood Uncertainty Estimation) 기법을 적용하였으며, 입력자료에 따른 불확실성 분석은 유량예측 앙상블에 활용되는 기상시나리오의 기간에 따라 수행하였다. 연구결과 앙상블 유량예측 기법은 입력자료 보다 모델 매개변수의 영향을 크게 받았으며, 20년 이상의 관측 기상자료가 확보되었을 때 활용하는 것이 적절하였다. 또한 BAYES-ESP는 ESP에 비해 불확실성을 감소시킬 수 있는 것으로 나타났다. 본 연구는 불확실성 분석을 통해 앙상블 유량예측기법의 특징을 규명하고 오차의 원인을 분석하였다는 점에서 가치가 있다고 판단된다.

Long-term prediction of safety parameters with uncertainty estimation in emergency situations at nuclear power plants

  • Hyojin Kim;Jonghyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1630-1643
    • /
    • 2023
  • The correct situation awareness (SA) of operators is important for managing nuclear power plants (NPPs), particularly in accident-related situations. Among the three levels of SA suggested by Ensley, Level 3 SA (i.e., projection of the future status of the situation) is challenging because of the complexity of NPPs as well as the uncertainty of accidents. Hence, several prediction methods using artificial intelligence techniques have been proposed to assist operators in accident prediction. However, these methods only predict short-term plant status (e.g., the status after a few minutes) and do not provide information regarding the uncertainty associated with the prediction. This paper proposes an algorithm that can predict the multivariate and long-term behavior of plant parameters for 2 h with 120 steps and provide the uncertainty of the prediction. The algorithm applies bidirectional long short-term memory and an attention mechanism, which enable the algorithm to predict the precise long-term trends of the parameters with high prediction accuracy. A conditional variational autoencoder was used to provide uncertainty information about the network prediction. The algorithm was trained, optimized, and validated using a compact nuclear simulator for a Westinghouse 900 MWe NPP.

Uncertainty investigation and mitigation in flood forecasting

  • Nguyen, Hoang-Minh;Bae, Deg-Hyo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.155-155
    • /
    • 2018
  • Uncertainty in flood forecasting using a coupled meteorological and hydrological model is arisen from various sources, especially the uncertainty comes from the inaccuracy of Quantitative Precipitation Forecasts (QPFs). In order to improve the capability of flood forecast, the uncertainty estimation and mitigation are required to perform. This study is conducted to investigate and reduce such uncertainty. First, ensemble QPFs are generated by using Monte - Carlo simulation, then each ensemble member is forced as input for a hydrological model to obtain ensemble streamflow prediction. Likelihood measures are evaluated to identify feasible member. These members are retained to define upper and lower limits of the uncertainty interval and assess the uncertainty. To mitigate the uncertainty for very short lead time, a blending method, which merges the ensemble QPFs with radar-based rainfall prediction considering both qualitative and quantitative skills, is proposed. Finally, blending bias ratios, which are estimated from previous time step, are used to update the members over total lead time. The proposed method is verified for the two flood events in 2013 and 2016 in the Yeonguol and Soyang watersheds that are located in the Han River basin, South Korea. The uncertainty in flood forecasting using a coupled Local Data Assimilation and Prediction System (LDAPS) and Sejong University Rainfall - Runoff (SURR) model is investigated and then mitigated by blending the generated ensemble LDAPS members with radar-based rainfall prediction that uses McGill algorithm for precipitation nowcasting by Lagrangian extrapolation (MAPLE). The results show that the uncertainty of flood forecasting using the coupled model increases when the lead time is longer. The mitigation method indicates its effectiveness for mitigating the uncertainty with the increases of the percentage of feasible member (POFM) and the ratio of the number of observations that fall into the uncertainty interval (p-factor).

  • PDF

Application of Monte Carlo simulations to uncertainty assessment of ship powering prediction by the 1978 ITTC method

  • Seo, Jeonghwa;Park, Jongyeol;Go, Seok Cheon;Rhee, Shin Hyung;Yoo, Jaehoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.292-305
    • /
    • 2021
  • The present study concerns uncertainty assessment of powering prediction from towing tank model tests, suggested by the International Towing Tank Conference (ITTC). The systematic uncertainty of towing tank tests was estimated by allowance of test setup and measurement accuracy of ITTC. The random uncertainty was varied from 0 to 8% of the measurement. Randomly generated inputs of test conditions and measurement data sets under systematic and random uncertainty are used to statistically analyze resistance and propulsive performance parameters at the full scale. The error propagation through an extrapolation procedure is investigated in terms of the sensitivity and coefficient of determination. By the uncertainty assessment, it is found that the uncertainty of resultant powering prediction was smaller than the test uncertainty.

다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가 (Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method)

  • 이기하;유완식;정관수;조복환
    • 한국수자원학회논문집
    • /
    • 제43권12호
    • /
    • pp.1011-1027
    • /
    • 2010
  • 모형의 구조, 모델링에 사용되는 자료, 매개변수 등에 포함된 다양한 불확실성 원인들은 수문모의 및 예측결과에 있어 불확실성을 야기한다. 본 연구에서는 강우-유출 및 강우-유사유출 모의가 가능한 분포형 강우-유사-유출 모형을 용담댐 상류유역인 천천유역에 적용하여 수문곡선 및 유사량곡선의 재현성을 평가하고, 다중최적화기법인 MOSCEM을 이용하여 강우-유출 모듈, 강우-유사유출 모듈의 매개변수를 독립적으로 보정한 경우(Case I과 II), 그리고 두 모듈이 결합된 강우-유사-유출 모형의 매개변수를 동시에 보정한 경우(Case III)에 대하여 Pareto 최적해를 추정하고, 이에 따른 수문 예측결과의 불확실성을 평가한다. 매개변수 불확실성의 전이에 따른 수문곡선의 불확실성 평가 결과(Case I), 모의기간 동안 고유량보다는 저유량 부분에서 불확실성 범위가 두드러졌으며, 이에 반해, 유사량곡선의 경우(Case II) 저농도보다는 고농도 부분에서 불확실성 범위가 넓게 분포하였다. 강우-유사-유출 모형의 매개변수의 불확실성을 동시에 추정한 경우 수문곡선 및 유사량곡선 모두 Case I과 II에 비해 모의기간 전반에 걸쳐 불확실성 범위가 넓게 분포되었으며, 매개 변수의 불확실성으로 인해 대상유역내 격자별 침식 및 퇴적 공간분포 양상이 상이하게 나타났다.

실내 라돈오염 해석을 위한 2구역 모델의 민감도 및 불확실성 분석 (Sensitivity and Uncertainty Analysis of Two-Compartment Model for the Indoor Radon Pollution)

  • 유동한;이한수;김상준;양지원
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.327-334
    • /
    • 2002
  • The work presents sensitivity and uncertainty analysis of 2-compartment model for the evaluation of indoor radon pollution in a house. Effort on the development of such model is directed towards the prediction of the generation and transfer of radon in indoor air released from groundwater. The model is used to estimate a quantitative daily human exposure through inhalation of such radon based on exposure scenarios. However, prediction from the model has uncertainty propagated from uncertainties in model parameters. In order to assess how model predictions are affected by the uncertainties of model inputs, the study performs a quantitative uncertainty analysis in conjunction with the developed model. An importance analysis is performed to rank input parameters with respect to their contribution to model prediction based on the uncertainty analysis. The results obtained from this study would be used to the evaluation of human risk by inhalation associated with the indoor pollution by radon released from groundwater.

단기 앙상블 예보에서 모형의 불확실성 표현: 태풍 루사 (Representation of Model Uncertainty in the Short-Range Ensemble Prediction for Typhoon Rusa (2002))

  • 김세나;임규호
    • 대기
    • /
    • 제25권1호
    • /
    • pp.1-18
    • /
    • 2015
  • The most objective way to overcome the limitation of numerical weather prediction model is to represent the uncertainty of prediction by introducing probabilistic forecast. The uncertainty of the numerical weather prediction system developed due to the parameterization of unresolved scale motions and the energy losses from the sub-scale physical processes. In this study, we focused on the growth of model errors. We performed ensemble forecast to represent model uncertainty. By employing the multi-physics scheme (PHYS) and the stochastic kinetic energy backscatter scheme (SKEBS) in simulating typhoon Rusa (2002), we assessed the performance level of the two schemes. The both schemes produced better results than the control run did in the ensemble mean forecast of the track. The results using PHYS improved by 28% and those based on SKEBS did by 7%. Both of the ensemble mean errors of the both schemes increased rapidly at the forecast time 84 hrs. The both ensemble spreads increased gradually during integration. The results based on SKEBS represented model errors very well during the forecast time of 96 hrs. After the period, it produced an under-dispersive pattern. The simulation based on PHYS overestimated the ensemble mean error during integration and represented the real situation well at the forecast time of 120 hrs. The displacement speed of the typhoon based on PHYS was closest to the best track, especially after landfall. In the sensitivity tests of the model uncertainty of SKEBS, ensemble mean forecast was sensitive to the physics parameterization. By adjusting the forcing parameter of SKEBS, the default experiment improved in the ensemble spread, ensemble mean errors, and moving speed.

불확실성을 고려한 통합유역모델링 (Integrated Watershed Modeling Under Uncertainty)

  • 함종화;윤춘경;다니엘 라욱스
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.

HCBKA 기반 오차 보정형 TSK 퍼지 예측시스템 설계 (Design of HCBKA-Based TSK Fuzzy Prediction System with Error Compensation)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1159-1166
    • /
    • 2010
  • To improve prediction quality of a nonlinear prediction system, the system's capability for uncertainty of nonlinear data should be satisfactory. This paper presents a TSK fuzzy prediction system that can consider and deal with the uncertainty of nonlinear data sufficiently. In the design procedures of the proposed system, HCBKA(Hierarchical Correlationship-Based K-means clustering Algorithm) was used to generate the accurate fuzzy rule base that can control output according to input efficiently, and the first-order difference method was applied to reflect various characteristics of the nonlinear data. Also, multiple prediction systems were designed to analyze the prediction tendencies of each difference data generated by the difference method. In addition, to enhance the prediction quality of the proposed system, an error compensation method was proposed and it compensated the prediction error of the systems suitably. Finally, the prediction performance of the proposed system was verified by simulating two typical time series examples.