• 제목/요약/키워드: Prediction Service

검색결과 1,092건 처리시간 0.031초

NBR과 MaxEnt 모델 분석을 활용한 희귀특산식물(개느삼) 분포 및 피해량 예측 - 양구 비봉산 산불피해지를 대상으로- (Prediction of Potential Habitat and Damage Amount of Rare·Endemic Plants (Sophora Koreensis Nakai) Using NBR and MaxEnt Model Analysis - For the Forest Fire Area of Bibongsan (Mt.) in Yanggu -)

  • 윤호근;이종원;안종빈;유승봉;박기쁨;신현탁;박완근;김상준
    • 한국자원식물학회지
    • /
    • 제35권2호
    • /
    • pp.169-182
    • /
    • 2022
  • 본 연구는 산불피해가 발생한 접경지역 산림 내 희귀특산식물(개느삼) 분포를 예측하고 피해를 정량화하고자 수행되었다. 이를 위해 산불피해강도에 따른 산림면적 피해(NBR), 임상도를 통한 수종별 피해(Vegetation map), MaxEnt 모델 분석을 수행, 보다 정밀한 결과를 도출하고자 하였다. 우선, 산불피해강도 분석은 위성영상(Landsat-8)을 활용하여, 산불피해강도(ΔNBR2016-2015)를 분석하고 피해범위를 도출하였다. 임상도 작성은 환경부의 토지피복도, 산림청의 임상도, 자체적으로 식생조사를 진행하여, 산불 전·후의 임상도를 작성하고, 수종 피해 및 변화를 확인하였다. 마지막으로 MaxEnt 모델 분석은 관련문헌과 자체조사 자료를 기준으로 작성된 개느삼 실제서식지 좌표를 활용하여, AUC(Area Under Curve) 값을 도출하였다. 분석된 결과의 정밀도를 높이고자, 임상도와 결합하여, 개느삼이 주로 분포하는 소나무 군락 및 소나무-참나무림 군락을 대상으로 재분석한 결과, 대상지 내 개느삼 실제출현 좌표 325개소 중 299개 지점에서 개느삼 출현가능성이 92.0%로 예측되어 유의미한 결과를 얻을 수 있었다. 해당 자료를 산불피해강도(ΔNBR2016-2015) 자료와 중첩한 결과, 산불피해지 내 개느삼 서식가능지(예측) 면적 44,760 m2의 45.9%인 20,552 m2가 훼손된 것을 확인할 수 있었다. 따라서 본 연구는 산불로 인해 훼손된 희귀식물 서식지 면적을 정량화하고 희귀식물 보전·관리를 위한 사례가 될 것으로 기대된다.

오대산국립공원 내 뱀류 로드킬 분포현황 및 발생예측 모델링 (Distribution and Prediction Modeling of Snake Roadkills in the National Parks of South Korea: Odaesan National Park)

  • 김석범;박일국;박대식
    • 한국환경생태학회지
    • /
    • 제36권5호
    • /
    • pp.460-467
    • /
    • 2022
  • 오대산국립공원 내 뱀류 로드킬의 발생 경향 파악 및 예방을 위하여 2006-2017년 사이 공원 내에서 발생한 뱀류 로드킬 자료를 확보 및 분석하였고, 잠재적 발생지 예측을 위하여 종분포모델을 제작하였다. 연구기간 동안 뱀류 로드킬은 600m 대의 양쪽 환경이 산림-수계인 도로에서 가장 많이 발생하였다. 모델링 결과에서 뱀류 로드킬 발생 가능성은 고도 700m 이하의 하천과의 거리가 25m 부근인 완만한 경사의 도로의 로드킬 발생확률이 높게 나타났다. 국립공원 내 주요 로드킬발생 예측지역은 국도 6호선 도로 위 공원 남쪽 경계로부터 약 2.2km 지역과 약 11.7km 지역이, 지방도 446호선 도로 위 공원 남쪽 경계로부터 약 3.44km 지역이었다. 본 연구결과는 해발고도 700m 이하 수계와 인접한 도로 주변에 우선적으로 대체 일광욕 장소, 생태통로 및 도로의 유입을 막는 울타리의 설치가 산림에서 뱀류 로드킬을 줄이는 효과적인 방안이 될 것을 제시한다.

일반선형회귀분석을 이용한 프락시 기반 한반도 VS30지도 개발 (Development of Korean Peninsula VS30 Map Based on Proxy Using Linear Regression Analysis)

  • 최인혁;유병호;곽동엽
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.35-44
    • /
    • 2022
  • VS30지도는 부지증폭을 나타내는 주요 변수로 임의의 부지에서 지반운동을 예측하는 ShakeMap의 핵심 변수로 사용된다. 하지만, 한반도의 지질특성과 지형특성을 고려하는 VS30지도는 아직 제시된 적이 없다. 이번 연구에서는 지질과 지형을 고려하는 VS30지도를 작성하기 위해 전단파 속도 주상도로부터 계산 또는 추정된 1,101개의 VS30과 한반도 광범위 지질, 지형정보 레이어를 수집하였다. 이러한 데이터와 일반선형회귀분석 방법을 사용하여 VS30 추정 모델을 개발하였다. 모델은 지질분류에 따라 매립지, 신생대 제4기 퇴적층, 중생대 그룹, 선캄브리아기와 해양층으로 구분된 후 지형정보의 함수로 제안되었다. 지도의 해상도는 기상청에서 기존에 진도추정을 위한 ShakeMap 구동에 사용하는 미국지질조사국(USGS)의 지도의 2배로 하였다. 그 결과, 프락시 기반 VS30지도의 대수로그 잔차의 표준편차는 0.233으로 USGS의 VS30 지도의 표준편차인 0.387보다 낮은 수치를 보인다. 본 연구에서 개발한 VS30지도를 사용한다면 ShakeMap의 불확실성이 줄어들 것으로 기대된다.

항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 - (Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun -)

  • 안필균;엄성준;김용균;조한솔;김상범
    • 농촌계획
    • /
    • 제27권4호
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

System Dynamics 기반의 산지전용 수요 모델 개발에 관한 연구 (Study on Forestland Conversion Demand Prediction based on System Dynamics Model)

  • 곽두안
    • 한국지리정보학회지
    • /
    • 제25권4호
    • /
    • pp.222-237
    • /
    • 2022
  • 본 연구에서는 우리나라의 미래 산지면적의 변화를 전망하기 위해 요인들의 인과관계에 기반한 System Dynamics 모델을 개발하여 2050년까지 산지전용 수요 변화를 전국 단위로 분석하였다. 모델을 개발하기 위한 산지전용 형태의 유형을 농업용지, 산업용지, 주거·상업용지, 공용·공공용지로 분류하여 시계열 자료로 구축하였다. 각 산지전용 유형에 영향을 주는 피드백 인자를 분석한 결과, 농업용지와 산업용지는 모두 GDP와 직접적인 음과 양의 관계를 가지는 것으로 나타났고, 공용·공공용지는 GDP와 직접적인 양의 관계가 성립하지만 생활용 목적이 대부분이기 때문에 인구수와도 직접적인 영향을 주고받는 것으로 나타났으며, 주거·상업용지의 경우에는 경기상황을 대표하는 GDP와 주택건축허가량에 직접 영향을 받는 것으로 분석되었다. 또한 각 유형에 영향을 주는 GDP, 주택건축허가량, 인구의 변수는 하위 단의 생산토지, 생산자산, 고용자수 등의 변수와 순환적 관계가 성립하고 이러한 변수에 의해 유발되는 유형별 전용면적은 생산토지에 다시 영향을 주는 피드백 관계를 나타내는 것으로 나타났다. 그리하여 본 연구에서는 한국은행, 통계청에서 제공하는 GDP와 인구자료와 기존 연구에서 도출된 주택건축허가량 시계열 자료를 이용하여 각 유형을 직접 추정하는 모델을 개발하였다. 그 결과 농업용지 전용수요는 지속해서 감소하고, 2050년까지의 산업용지 수요는 2020년 전용면적 대비 약 39% 정도 감소하는 것으로 나타났으며, 공용·공공용지의 경우 2050년까지 감소추세를 나타내며 인구가 감소하는 2029년 이후부터 수요의 감소율이 지속해서 증가하는 것으로 분석되었으며, 주거·상업용지의 수요는 가구수 감소와 더불어 2034년 정점 대비 약 1,634ha까지 줄어드는 것으로 예측되었다. 이렇듯 산지전용은 미래에도 지속해서 발생하기 때문에 산지의 보호와 국토의 균형적 발전을 위해서는 현재의 산지이용 체계를 개선하여 합리적인 이용을 유도할 수 있는 법률과 정책이 수반되어야 할 것으로 사료된다.

공간 빅데이터를 활용한 지방도 포장보수 우선지역 예측 서비스 (Priority Area Prediction Service for Local Road Packaging Maintenance Using Spatial Big Data)

  • 이민영;최지우;김인영;손수진;최인호
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.79-101
    • /
    • 2023
  • 전라북도의 지방도 포장보수 이력 관리 현황은 현장 건설사의 포장보수 후 성과품에만 의존하여 엑셀, 한글 문서로만 관리되고 있는 실정이며, 덧씌우기 예산 등은 매년 불규칙적인 투입으로 안정적인 도로 관리 불가한 현황이다. 그에 따라 지방도의 체계적인 유지관리 방안 필요하다. 해당 논문에서는 도로 파손과 관련이 있는 데이터 및 도로 환경과 관련이 있는 데이터를 수집 및 가공하여, 도로 파손이 발생할 수 있는 위험지역을 도출하였다. 해당 예측 결과 지역을 현장검수하여 해당 방법론의 유효성을 파악하였다. 국토부에 따르면 일반국도의 도로 파임 발생 건수는 18년도에 약 4만7천건, 19년도에 약 3만8천 건이며 도로 파임 피해 소송건수는 18년도에 93건, 19년도에 119건으로 증가했다. 일반국도의 경우 도로 파임 발생 건수가 18년도에 비해 줄었으나 이는 도로 포장 보수 등을 진행하면서 발생 건수가 줄어든 것이라고 한다. 전라북도의 지방도의 포장보수 우선순위를 분석하기 위해 연구를 진행하기 위해, 엑셀, 한글 문서로만 관리되는 지방도 포트홀 상습발생지, 덧씌우기 사업구간, 긴급 보수구간위치와 같은 보수 이력데이터를 데이터화 하여, 분석하고, 보수 이력 데이터에서 벗어나 지방도의 체계적인 유지관리를 개선한다. 더 나아가, 도로와 관련된 다양한 현황데이터를 활용하여 공간 융합 데이터를 구축하고, 머신러닝 학습 데이터 및 예측에 필요한 데이터 형태로 가공하였다. 해당 공간 빅데이터를 사용하여 지방도 유지관리가 필요한 우선지역을 예측하고 도로포장 유지관리 우선순위 예측하였으며, 해당 결과를 활용하여 도로관리 예산 및 정책 수립에 활용하려 한다.

위성 및 광역지표모형 기반 자료와 SWAT 모형을 이용한 미계측 두만강 유역의 장기 수문영향 평가 (Assessment of the long-term hydrologic impacts on the ungaged Tumen River basin by using satellite and global LSM based on data and SWAT model)

  • 조영현;안윤호;박상영;박진혁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.94-94
    • /
    • 2020
  • 최근 정부의 신북방정책 추진에 따라 수자원분야에서는 동북아지역 국제 공유하천을 중심의 물 정보 및 연구협력 기회 확보와 지정학적 특성을 고려한 지역 현안해결 중심의 연구가 재조명 되고 있다. 두만강은 이러한 동북아의 중심에 위치하고 있으며, 중국, 북한, 러이사의 국경을 따라 흐르며 지역 수자원의 대부분을 공급하는 국제하천이다. 또한, 지난 2018년 5월에는 하구유역이 람사르(Ramsar) 습지로 승인됨에 따라 철새 등을 포함한 생태가치의 중요성도 크게 증가하였다. 하지만 이 지역은 유역의 지정학적 민감성과 접근이 제한된 관측 정보들로 인해 그 수자원·환경 효용성을 정확하게 파악할 수 없을 뿐만 아니라, 최근 기후변화에 따른 영향으로 홍수, 가뭄 등의 수재해와 수질오염 등의 문제가 발생하고 있어 가용한 기술기반의 직·간접적 접근을 통한 장기수문 및 환경변화 등에 대한 분석과 관리방안 수립 등의 연구가 필요하다. 본 연구에서는 이러한 미계측 두만강 유역을 대상으로 우선, 가용한 위성자료 및 광역지표모형(MERRA-2) 기반 NASA POWER(Prediction of Worldwide Energy Resource) 수문기상 자료와 SWAT(Soil and Water Assessment Tool) 모형을 활용하여 장기 수문영향을 평가하고자 한다. SWAT 모형은 전 지구적으로 활용 가능한 격자 해상도 약 30m의 위성기반 수치표고모형(DEM), 광역 토양도, 지역 토지이용도 자료를 활용하여 두만강 유역을 전체 19개 소유역 및 18개 하도, 138개 HRUs의 수문분석 단위로 구축하였으며, 모의는 미국 NOAA NCDC(National Climate Data Center) 및 중국 CMDC(China Meteorological Data Service Center)의 주요 관측지점에서 선별한 총 13개소의 위치에 대해 재분석된 기후/기상자료들(NASA POWER 강수, 기온, 풍속, 상대습도 및 일사량)을 적용, 1990년에서 2019년까지의 30개년도 연속자료를 구축활용 하였다. 한편, 모형의 검·보정은 앞서 언급한 관측 자료의 부재로 과거 문헌 등을 통해 파악할 수 있는 연 단위 수자원 총량 등을 활용해 진행코자한다. 아울러, 향후는 최근 활용 가능한 장기 위성관측 강수량을 적용, 재분석 자료 결과와의 비교를 통해 상호 분석 오류를 줄여나갈 수 있을 것으로도 판단된다.

  • PDF

합성곱 신경망을 이용한 오염부하량 예측에 관한 연구 (A study on pollutant loads prediction using a convolution neural networks)

  • 송철민
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.444-444
    • /
    • 2021
  • 하천의 오염부하량 관리 계획은 지속적인 모니터링을 통한 자료 구축과 모형을 이용한 예측결과를 기반으로 수립된다. 하천의 모니터링과 예측 분석은 많은 예산과 인력 등이 필요하나, 정부의 담당 공무원 수는 극히 부족한 상황이 일반적이다. 이에 정부는 전문가에게 관련 용역을 의뢰하지만, 한국과 같이 지형이 복잡한 지역에서의 오염부하량 배출 특성은 각각 다르게 나타나기 때문에 많은 예산 소모가 발생 된다. 이를 개선하고자, 본 연구는 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 BOD 및 총인의 부하량 예측 모형을 개발하였다. 합성곱 신경망의 입력자료는 일반적으로 RGB (red, green, bule) 사진을 이용하는데, 이를 그래도 오염부하량 예측에 활용하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이에, 본 연구에서는 오염부하량이 수문학적 조건과 토지이용 등의 변수에 의해 결정된다는 인과관계를 만족시키고자 수문학적 속성이 내재된 수문학적 이미지를 합성곱 신경망의 훈련자료로 사용하였다. 수문학적 이미지는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는데, 여기서 각 grid의 수문학적 속성은 SCS 토양보존국(soil conservation service, SCS)에서 발표한 수문학적 토양피복형수 (curve number, CN)를 이용하여 산출한다. 합성곱 신경망의 구조는 2개의 Convolution Layer와 1개의 Pulling Layer가 5회 반복하는 구조로 설정하고, 1개의 Flatten Layer, 3개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 마지막으로 1개의 Dense Layer가 연결되는 구조로 설계하였다. 이와 함께, 각 층의 활성화 함수는 정규화 선형함수 (ReLu)로, 마지막 Dense Layer의 활성화 함수는 연속변수가 도출될 수 있도록 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 연구의 대상지역은 경기도 가평군 조종천 유역으로 선정하였고, 연구기간은 2010년 1월 1일부터 2019년 12월 31일까지로, 2010년부터 2016년까지의 자료는 모형의 학습에, 2017년부터 2019년까지의 자료는 모형의 성능평가에 활용하였다. 모형의 예측 성능은 모형효율계수 (NSE), 평균제곱근오차(RMSE) 및 평균절대백분율오차(MAPE)를 이용하여 평가하였다. 그 결과, BOD 부하량에 대한 NSE는 0.9, RMSE는 1031.1 kg/day, MAPE는 11.5%로 나타났으며, 총인 부하량에 대한 NSE는 0.9, RMSE는 53.6 kg/day, MAPE는 17.9%로 나타나 본 연구의 모형은 우수(good)한 것으로 판단하였다. 이에, 본 연구의 모형은 일반 ANN 모형을 이용한 선행연구와는 달리 2차원 공간정보를 반영하여 오염부하량 모의가 가능했으며, 제한적인 입력자료를 이용하여 간편한 모델링이 가능하다는 장점을 나타냈다. 이를 통해 정부의 물관리 정책을 위한 의사결정 및 부족한 물관리 분야의 행정력에 도움이 될 것으로 생각된다.

  • PDF

단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측 (Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges)

  • 정현진;안효준;김재환;박기태;이종한
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.102-110
    • /
    • 2023
  • 국내 고속도로 교량 중 가장 많은 비중을 차지하고 있는 PSC-I 거더교의 최근 10년간 정밀 안전진단 데이터의 상태등급을 분석한 결과 41.3%가 C등급으로 나타났다. 노후화되는 교량이 증가함에 따라 선제적 관리가 중요시되고 있다. 바닥판과 거더는 손상 및 열화 발생 시 교체 주기가 길어 교량의 서비스 및 노후도에 미치는 영향이 매우 크다. 또한 신축이음과 교량받침 등의 장치 손상 발생 비율도 높아 교량 부재에 미치는 영향에 대한 연구가 필요한 실정이다. 따라서 본 연구에서는 단경간 및 다경간 대표 PSC-I 거더 교량을 선정하여, 교량의 주요부재 및 부재 장치의 단일손상과 바닥판의 열화가 결합된 이종손상 시나리오를 정의하였다. 이종손상이 발생한 경우 단일손상이 발생한 경우보다 균열 발생 면적이 증가하였으며, 단경간 교량의 경우 교량받침 손상으로 인해 거더 균열 분포가 크게 확산되었으며, 다경간 교량의 경우 신축이음 양면손상으로 인해 바닥판의 균열분포가 크게 확산되었다. 이를 통해 교량 장치 손상이 발생하였을 때, 신속한 보수 및 교체가 이루어지지 않으면 손상 발생과 손상 확산으로 2차 피해를 유발할 수 있어, 바닥판 및 거더의 응답에 대한 지속적인 관찰과 대응이 필요할 것으로 판단된다.

양식뱀장어 생산단계 안전성 조사를 위한 베이지안 네트워크 모델의 적용 (Application of Bayesian network for farmed eel safety inspection in the production stage)

  • 조승용
    • 한국식품저장유통학회지
    • /
    • 제30권3호
    • /
    • pp.459-471
    • /
    • 2023
  • 뱀장어 생산단계 안전성조사 부적합여부에 영향을 미치는 특성변수를 베이지안 네트워크(BN) 모델을 적용하여 분석하였다. 2012년부터 2021년까지의 통합식품안전정보망(IFSIN)의 뱀장어 생산단계 안전성조사 데이터에 양식장의 HACCP 정보, 지리적 정보 및 용수환경 데이터를 연계하여 BN 모델을 수립하였다. 뱀장어의 부적합여부에 영향을 주는 특성변수로 양식장의 HACCP 인증여부, 양식장의 이전 5년간 검사대상 유해물질의 검출여부, 해당 양식장의 이전 5년간 부적합적발이력, 사용되는 용수환경의 적정성이 제안되었으며, 이때 용수환경의 적정성은 총대장균군과 총유기탄소량으로부터 산출되었다. 뱀장어 부적합이 발생할 확률이 가장 높은 경우는 지난 5년간 검사대상 유해물질의 검출이력이 있으면서 동시에 부적합 적발 이력이 있는 HACCP 인증을 받지 않은 양식장으로서, 용수환경도 총대장균군 또는 총유기탄소가 높아 오염이 의심되는 용수를 사용하는 경우로 이때 부적합이 발생할 확률은 24.5%로 뱀장어 생산단계 안전성 조사 시 부적합률인 0.26%의 94배 높았다. 2022년 1월부터 8월까지 뱀장어 양식장 안전성조사 결과를 시험용 데이터세트(6,785건 중 부적합 15건)로 하여 BN 모델의 적정성을 검토하였다. 영향강도가 높았던 설명변수인 HACCP, 검출이력, 부적합이력으로 구성한 BN 모델을 시험용 데이터세트에 적용한 결과 부적합일 확률이 15.8%로 시험용데이터의 부적합률인 0.22%의 약 71.4배 개선할 수 있었다. 그러나 이 모델의 재현율은 0.2에 머물렀는데, 이는 특히 부적합항목인 유해물질의 기준·규격이 신설되어 해당 양식장에서 검사기록이 없는 경우와, 매우 드물게 발생하여 10년 동안 검출이력이 없어 학습데이터세트에는 없는 경우이었다. 베이지안 네트워크를 적용하여 부적합확률이 높은 생산단계 안전성 조사대상을 선정하게 되면 설명변수별로 시나리오에 따라 부적합확률을 설명가능하게 되어 다른 머신러닝 알고리즘을 적용하는 경우 지적되어온 설명불가능이라는 문제점을 해소할 수 있으며, 향후 안전성조사 데이터 축적 시 용이하게 모델 업데이트가 가능하며 이를 통해 모델의 예측성능개선도 기대할 수 있다는 장점이 있다.