• Title/Summary/Keyword: Prediction Ratio

Search Result 1,950, Processing Time 0.034 seconds

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet (II)

  • Lim, S.B.;So, J.D.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1999
  • The prediction of the critical Reynolds number in the stability curie of liquid jet was mainly analyzed by the empirical correlations and the experimental data through the literature. The factors affecting the critical Reynolds number include Ohnesorge number, nozzle length-diameter ratio, ambient pressure and nozzle inlet type. The nozzle inlet type was divided into two groups according to the dependence of the critical Reynolds number on the length-to-diameter ratio of nozzle. The empirical correlations for the critical Reynolds number as a function of above factors mentioned are newly proposed.

  • PDF

Construction of the Intelligence Stress Predictor for Compression Strength Evaluation (압축강도 평가를 위한 지능형 응력예측기 구축)

  • 박원규;우영환;이종구;윤인식
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.95-101
    • /
    • 2001
  • This work is concerned with construction of the intelligence stress predictor far compression strength evaluation using neural network-ultrasonic waves. The contact pressure in jointed plates was measured by using ultrasonic technique. Neural network is used to evaluate and predict contact pressure from the results of the calibration curves. The organized neural system was leaned with the accuracy of 99%, as a result of learning the ultrasonic echo ratio to the contact pressure measurement between SM45C and STS410 materials. And it could be evaluated and predicted with the accuracy of 90% in the evaluation of ultrasonic echo ratio difference in the same surface roughness and contact pressure, and 85% in the prediction of virtual ultrasonic echo ratio. Thus the proposed stress predictor is very useful for the evaluation and prediction of the contact pressure between SM45C and STS410 materials.

  • PDF

Fatigue Crack Propagation Behavior for Electron Beam Welded Joint of SUS 321 (SUS 321 전자비임 용접부의 피로균열진전거동)

  • 김재훈
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.2
    • /
    • pp.57-64
    • /
    • 1997
  • Fatigue crack propagation behaviors and life prediction for SUS 321 plate and its electron beam weld metal were investigated using compact tension specimens. The larger the stress ratio is, the faster the crack propagates, but the variation of crack propagation rate decreases. The effect of stress ratio is greater in the slow crack propagation area than in the faster one. The crack propagation rate of electron beam weld metal is faster than that of base metal because of hardening, weld defect and residual stress in welding area. The crack propagation rate of transverse weld metal has a lower than that of base metal due to the effect of residual stress, but in the time of passing through welding area, has a higher rate. The crack propagation rate using $\Delta$K$_{eff}$ can be well plotted regardless of stress ratio. The fatigue life prediction method of considering crack closure more exactly predicts fatigue life than conventional one. conventional one.e.

  • PDF

Torsional parameters importance in the structural response of multiscale asymmetric-plan buildings

  • Bakas, Nikolaos;Makridakis, Spyros;Papadrakakis, Manolis
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.55-74
    • /
    • 2017
  • The evaluation of torsional effects on multistory buildings remains an open issue, despite considerable research efforts and numerous publications. In this study, a large number of multiple test structures are considered with normally distributed topological attributes, in order to quantify the statistically derived relationships between the torsional criteria and response parameters. The linear regression analysis results, depict that the center of twist and the ratio of torsion (ROT) index proved numerically to be the most reliable criteria for the prediction of the modal rotation and displacements, however the residuals distribution and R-squared derived for the ductility demands prediction, was not constant and low respectively. Thus, the assessment of the torsional parameters' contribution to the nonlinear structural response was investigated using artificial neural networks. Utilizing the connection weights approach, the Center of Strength, Torsional Stiffness and the Base Shear Torque curves were found to exhibit the highest impact numerically, while all the other torsional indices' contribution was investigated and quantified.

Korean Seismic Station Site Effect Estimation Using Generalized Inversion Technique (일반 역산 기법을 활용한 한국 지표 관측소 부지 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.

Prediction of Andong Reservoir Inflow Using Ensemble Technique (앙상블 기법을 이용한 안동댐 유입량 예측)

  • Kang, Min Suk;Yu, Myungsu;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.795-804
    • /
    • 2014
  • In this study, Andong Reservoir monthly and ten days inflows from July 2011 to September 2011 are predicted using SWAT model and ensemble technique. The weight method using monthly and ten days rainfall forecasts from Korea Meteorological Administration is applied for accurate analysis. If the rainfall prediction announced by Korea Meteorological Administration is close to the actual rainfall, the PDF-Ratio Method shows the best result. If the past high rainfall occurrence is close to the actual rainfall, the modified PDF-Ratio method shows the best result. This method can improve the prediction accuracy even though the Korea Meteorological Administration forecast is not accurate. On the contrary, if Korea Meteorological Administration forecast is different from the actual rainfall and the past rainfall occurrence statistics of lower section, the uniform method shows the best result.

Prediction of Maximum Fly Ash Conveying Capacity of Fly Ash System in a Power Plant (발전 보일러용 비회 이송설비에서 최대 비회 이송량 예측)

  • Jin, Kyung-Yong;Moon, Yoon-Jae;Lee, Jae-Heon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.11 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study presents prediction of maximum fly ash conveying capacity of fly ash system in a power plant. The mixture ratio and pressure drop characteristics of air-fly ash flow in piping system are not well understood due to the complexity of particle motion mechanism. In this paper, the researcher investigated the optimum mixture ratio when the pressure drop of fly ash conveying system is equal to maximum static pressure of displacement fly ash transport blower and the capacity of fly ash transport according to the optimum mixture ratio by experimenting the fly ash conveying system of domestic D coal thermal power plants, which is currently in operation. The experiment results showed that the maximum fly ash conveying capacity of fly ash system were founded under the condition of maximum air volume 5,040 m3/h, static pressure of trip condition 1,163 mmH2O. In addition, it was predicted maximum mixture ratio of the air-fly ash was 8.66 and maximum capacity of fly ash conveying was 52,600 kg/h under these conditions.

  • PDF

Improving Hit Ratio and Hybrid Branch Prediction Performance with Victim BTB (Victim BTB를 활용한 히트율 개선과 효율적인 통합 분기 예측)

  • Joo, Young-Sang;Cho, Kyung-San
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2676-2685
    • /
    • 1998
  • In order to improve the branch prediction accuracy and to reduce the BTB miss rate, this paper proposes a two-level BTB structure that adds small-sized victim BTB to the convetional BTB. With small cost, two-level BTB can reduce the BTB miss rate as well as improve the prediction accuracy of the hybrid branch prediction strategy which combines dynamic prediction and static prediction. Through the trace-driven simulation of four bechmark programs, the performance improvement by the proposed two-level BTB structure is analysed and validated. Our proposed BTB structure can improve the BTB miss rate by 26.5% and the misprediction rate by 26.75%

  • PDF

Development of technique for slope hazards prediction using decision tree model (의사결정나무모형을 이용한 급경사지재해 예측기법 개발)

  • Song, Young-Suk;Cho, Yong-Chan;Chae, Byung-Gon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.233-242
    • /
    • 2009
  • Based on the data obtained from field investigation and soil testing to slope hazards occurrence section and non-occurrence section in crystalline rocks like gneiss, granite, and so on, a prediction model was developed by the use of a decision tree model. The classification standard of the selected prediction model is composed of the slope angle, the coefficient of permeability and the void ratio in the order. The computer program, SHAPP ver. 1.0 for prediction of slope hazards around an important national facilities using GIS technique and the developed model. To prove the developed prediction model and the computer program, the field data surveyed from Jumunjin, Gangneung city were compared with the prediction result in the same site. As the result of comparison, the real occurrence location of slope hazards was similar to the predicted section. Through the continuous study, the accuracy about prediction result of slope hazards will be upgraded and the computer program will be commonly used in practical.

  • PDF

Prediction of Poisson's ratio degradation in hygrothermal aged and cracked [θm/90n]s composite laminates

  • Khodjet-Kesb, M.;Adda bedia, E.A.;Benkhedda, A.;Boukert, B.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.57-72
    • /
    • 2016
  • The Poisson ratio reduction of symmetric hygrothermal aged $[{\theta}_m/90_n]_s$ composite laminates containing a transverse cracking in mid-layer is predicted by using a modified shear-lag model. Good agreement is obtained by comparing the prediction models and experimental data published by Joffe et al. (2001). The material properties of the composite are affected by the variation of temperature and transient moisture concentration distribution in desorption case, and are based on a micro-mechanical model of laminates. The transient and non-uniform moisture concentration distribution give rise to the transient Poisson ratio reduction. The obtained results represent well the dependence of the Poisson ratio degradation on the cracks density, fibre orientation angle of the outer layers and transient environmental conditions. Through the presented study, we hope to contribute to the understanding of the hygrothermal behaviour of cracked composite laminate.