With the increase in the spread of smart devices and the impact of COVID-19, the consumption of media contents through smart devices has significantly increased. Along with this trend, the amount of media contents viewed through OTT platforms is increasing, that makes contents recommendations on these platforms more important. Previous contents-based recommendation researches have mostly utilized metadata that describes the characteristics of the contents, with a shortage of researches that utilize the contents' own descriptive metadata. In this paper, various text data including titles and synopses that describe the contents were used to recommend similar contents. KLUE-RoBERTa-large, a Korean language model with excellent performance, was used to train the model on the text data. A dataset of over 20,000 contents metadata including titles, synopses, composite genres, directors, actors, and hash tags information was used as training data. To enter the various text features into the language model, the features were concatenated using special tokens that indicate each feature. The test set was designed to promote the relative and objective nature of the model's similarity classification ability by using the three contents comparison method and applying multiple inspections to label the test set. Genres classification and hash tag classification prediction tasks were used to fine-tune the embeddings for the contents meta text data. As a result, the hash tag classification model showed an accuracy of over 90% based on the similarity test set, which was more than 9% better than the baseline language model. Through hash tag classification training, it was found that the language model's ability to classify similar contents was improved, which demonstrated the value of using a language model for the contents-based filtering.
K.R. Sri Preethaa;N. Yuvaraj;Gitanjali Wadhwa;Sujeen Song;Se-Woon Choi;Bubryur Kim
Wind and Structures
/
v.36
no.4
/
pp.237-247
/
2023
The emergence of high-rise buildings has necessitated frequent structural health monitoring and maintenance for safety reasons. Wind causes damage and structural changes on tall structures; thus, safe structures should be designed. The pressure developed on tall buildings has been utilized in previous research studies to assess the impacts of wind on structures. The wind tunnel test is a primary research method commonly used to quantify the aerodynamic characteristics of high-rise buildings. Wind pressure is measured by placing pressure sensor taps at different locations on tall buildings, and the collected data are used for analysis. However, sensors may malfunction and produce erroneous data; these data losses make it difficult to analyze aerodynamic properties. Therefore, it is essential to generate missing data relative to the original data obtained from neighboring pressure sensor taps at various intervals. This study proposes a deep learning-based, deep convolutional generative adversarial network (DCGAN) to restore missing data associated with faulty pressure sensors installed on high-rise buildings. The performance of the proposed DCGAN is validated by using a standard imputation model known as the generative adversarial imputation network (GAIN). The average mean-square error (AMSE) and average R-squared (ARSE) are used as performance metrics. The calculated ARSE values by DCGAN on the building model's front, backside, left, and right sides are 0.970, 0.972, 0.984 and 0.978, respectively. The AMSE produced by DCGAN on four sides of the building model is 0.008, 0.010, 0.015 and 0.014. The average standard deviation of the actual measures of the pressure sensors on four sides of the model were 0.1738, 0.1758, 0.2234 and 0.2278. The average standard deviation of the pressure values generated by the proposed DCGAN imputation model was closer to that of the measured actual with values of 0.1736,0.1746,0.2191, and 0.2239 on four sides, respectively. In comparison, the standard deviation of the values predicted by GAIN are 0.1726,0.1735,0.2161, and 0.2209, which is far from actual values. The results demonstrate that DCGAN model fits better for data imputation than the GAIN model with improved accuracy and fewer error rates. Additionally, the DCGAN is utilized to estimate the wind pressure in regions of buildings where no pressure sensor taps are available; the model yielded greater prediction accuracy than GAIN.
Jin Ryeol An;Seo-Yeong Mun;In Kyo Jung;Kwan Soo Kim;Chan Hyeok Kwon;Sun Ok Choi;Won Sun Park
The Korean Journal of Physiology and Pharmacology
/
v.27
no.3
/
pp.267-275
/
2023
Cardiotoxicity, particularly drug-induced Torsades de Pointes (TdP), is a concern in drug safety assessment. The recent establishment of human induced pluripotent stem cell-derived cardiomyocytes (human iPSC-CMs) has become an attractive human-based platform for predicting cardiotoxicity. Moreover, electrophysiological assessment of multiple cardiac ion channel blocks is emerging as an important parameter to recapitulate proarrhythmic cardiotoxicity. Therefore, we aimed to establish a novel in vitro multiple cardiac ion channel screening-based method using human iPSC-CMs to predict the drug-induced arrhythmogenic risk. To explain the cellular mechanisms underlying the cardiotoxicity of three representative TdP high- (sotalol), intermediate- (chlorpromazine), and low-risk (mexiletine) drugs, and their effects on the cardiac action potential (AP) waveform and voltage-gated ion channels were explored using human iPSC-CMs. In a proof-of-principle experiment, we investigated the effects of cardioactive channel inhibitors on the electrophysiological profile of human iPSC-CMs before evaluating the cardiotoxicity of these drugs. In human iPSC-CMs, sotalol prolonged the AP duration and reduced the total amplitude (TA) via selective inhibition of IKr and INa currents, which are associated with an increased risk of ventricular tachycardia TdP. In contrast, chlorpromazine did not affect the TA; however, it slightly increased AP duration via balanced inhibition of IKr and ICa currents. Moreover, mexiletine did not affect the TA, yet slightly reduced the AP duration via dominant inhibition of ICa currents, which are associated with a decreased risk of ventricular tachycardia TdP. Based on these results, we suggest that human iPSC-CMs can be extended to other preclinical protocols and can supplement drug safety assessments.
Juhyeong Kang;Yeojin Kim;Jiseon Yang;Seungwon Chung;Sungeun Hwang;Uran Oh;Hyang Woon Lee
International journal of advanced smart convergence
/
v.12
no.3
/
pp.89-103
/
2023
Obstructive sleep apnea (OSA) is one of the most prevalent sleep disorders that can lead to serious consequences, including hypertension and/or cardiovascular diseases, if not treated promptly. Continuous positive airway pressure (CPAP) is widely recognized as the most effective treatment for OSA, which needs the proper titration of airway pressure to achieve the most effective treatment results. However, the process of CPAP titration can be time-consuming and cumbersome. There is a growing importance in predicting personalized CPAP pressure before CPAP treatment. The primary objective of this study was to optimize the CPAP titration process for obstructive sleep apnea patients through EEG feature engineering with machine learning techniques. We aimed to identify and utilize the most critical EEG features to forecast key OSA predictive indicators, ultimately facilitating more precise and personalized CPAP treatment strategies. Here, we analyzed 126 OSA patients' PSG datasets before and after the CPAP treatment. We extracted 29 EEG features to predict the features that have high importance on the OSA prediction index which are AHI and SpO2 by applying the Shapley Additive exPlanation (SHAP) method. Through extracted EEG features, we confirmed the six EEG features that had high importance in predicting AHI and SpO2 using XGBoost, Support Vector Machine regression, and Random Forest Regression. By utilizing the predictive capabilities of EEG-derived features for AHI and SpO2, we can better understand and evaluate the condition of patients undergoing CPAP treatment. The ability to predict these key indicators accurately provides more immediate insight into the patient's sleep quality and potential disturbances. This not only ensures the efficiency of the diagnostic process but also provides more tailored and effective treatment approach. Consequently, the integration of EEG analysis into the sleep study protocol has the potential to revolutionize sleep diagnostics, offering a time-saving, and ultimately more effective evaluation for patients with sleep-related disorders.
Jong Woo Park;Chang Hoon Lee;Chan Young Jeong;Hyeok Gyu Kwon;Seul Ki Park;Ji Hae Lee;Sang Kuk Kang;Seong-Wan Kim;Seong-Ryul Kim;Hyun-Bok Kim;Kee Young Kim
International Journal of Industrial Entomology and Biomaterials
/
v.46
no.1
/
pp.16-23
/
2023
The silkworm's dormancy and embryonic development are accomplished through the interaction of various genes. Analysis of the expression of several interacting genes can predict the embryonic stage of silkworms. In this study, we analyzed the changes in the expression level of genes at each stage during the embryonic development of dormant silkworm eggs and selected genes that can predict the hatching time. Jam123 and Jam124 silkworms were collected after egg laying, and the silkworm eggs were preserved using a double refrigeration method and expression analysis was performed for 23 genes during embryogenesis. There were 5 genes showing significant changes during embryogenesis: UDP-glucuronosyltransferases (BmUGTs), heat shock protein hsp20.8 (BmHsp20.8), Cytochromes b5-like proteins (BmCytb5), Krüppel homolog 1 (BmKr-h1), and cuticular protein RR-1 motif 41 (BmCpr41). As a result of quantitative comparison of the expression levels of these 5 genes through real-time PCR, the BmUGTs gene showed a difference between Jam123 and Jam124, making it difficult to see it as an indicator for predicting hatching time. However, the BmHsp20.8 gene had a common expression decreased at the imminent hatching stage. In addition, it was confirmed that the expression level of the BmCytb5 gene decreased to the lowest level at the time of imminent hatching, and the expression of the BmKr-h gene was made only at the time of imminent hatching. The expression of the last BmCpr41 gene can be confirmed only at the time of imminent hatching, and it was confirmed that it shows a rapid increase right before hatching. Taken together, these results suggest that expression analysis of BmHsp20.8, BmCytb5, BmKr-h1, and BmCpr41 genes can determine the stage of embryogenesis, predict hatching time, which facilitate better management of silkworm eggs.
To predict accurately the thermal hydraulic behavior of light water reactors during normal or abnormal operation, the accurate estimation of the void distribution is required. Up to date, many techniques for predicting void fraction of two-phase flow systems have been suggested. Among these techniques, the drift-flux model is widely used because of its exact calculation ability and simplicity. However, to get more accurate prediction of void fraction using drift-flux model, slip and flow regime effects must be considered more properly In the drift-flux method, these two effects are accounted for by two drift-flux parameters ; $C_{o}$ and (equation omitted). At earlier stage, $C_{o}$ is measured in a circular tube. In this study, $C_{o}$ is experimentally determined by measuring local void fraction and vapor velocity distribution in a rectangular subchannel having 4 heating rods which simulates nuclear subchannels. The measurements are peformed with two-electrical conductivity probes which are known to be adequate for measuring local parameters. The experiments are performed at low flow rate and the system pressure less than 3 atmo spheric pressure. In this experiment, (equation omitted), is not measured, but quoted from well-known empirical correlation to formulate $C_{o}$. Finally, $C_{o}$ is expressed as a function of channel averaged void fraction. fraction.
Kim, Rae-Hyun;Hong, Sung-Jin;Jung, Doo-Suk;Lee, Woo-Jin
Journal of the Korean Geotechnical Society
/
v.24
no.6
/
pp.77-84
/
2008
The existing equations for radial consolidation cannot account for the changes of well resistance with time and cannot predict the appropriate in-situ consolidation curve. In this study, small cylinder cell tests are performed to evaluate the discharge capacity of PVD. Also, a block sample of 1.2 m in diameter and 2.0 m in height was consolidated to observe the change in the drainage capacity with time for three types of PVD. From the test results on a block sample, the drainage curves normalized with initial drainage of each PVD are similar, regardless of the PVD type and the consolidation curve, which is predicted using solutions of radial consolidation based on the discharge capacity measured in a small cylinder cell tests, significantly overestimates the degree of consolidation. The term of well resistance in the radial consolidation solution was back-calculated to fit the consolidation curve of a large block sample and it is defined as the time dependent well resistance factor, L(t). The L(t) was found to be linearly proportional to the dimensionless time factor, Th. It was also shown that the consolidation curve evaluated by using L(t) provides more accurate prediction than the existing solution.
It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.
The is study is to evaluate the small strain shear modulus ($G_{max}$) of Busan clay using in-situ penetration tests. A series of dilatometer tests (DMT) and piezocone penetration tests (CPTu) are performed at Busan newport and Noksan sites, and hybrid oedometer tests are also carried out on the specimens obtained from both sites. The $G_{max}$ is evaluated from the shear wave velocity ($V_s$) measured by the bender elements installed at the boundary of oedometer cell. By analyzing these data, the relationship of $G_{max}$ and state variables, such as confined stress and void ratio, is developed. The analysis of lab and in-situ test results reveals that the ratio of $G_{max}$ to $q_t$ is inversely proportional to the plasticity index while the ratio of $G_{max}$ to $E_D$ has a linear relationship with ($I/I_D$)$(p_a/{\sigma}'_v)^{0.5}$. Two correlations suggested in this study, based on CPT and DMT results, appear to provide reasonable predictions of the small strain shear modulus.
This study proposes a method to estimate drilling torque during ground boring with an aid of electrical energy required for rotating a boring-auger. Ground boring is commonly used in geotechnical engineering such as preboring precast pile installation, soil-cement grouting, ground exploration and so forth. In order to understand the correlation between required electrical energy to rotate the boring auger and the drilling torque, a small laboratory apparatus was designed and a pilot study was performed. The apparatus rotates common drill bits of $D=5{\sim}25mm$ in CBR specimens. The velocity of a bit is 19 RPM and predefined using a reduction gear which connects a main rotation axis to a 25 Watts AC electrical motor shaft. In the middle of drilling the motor current increments and the drilling torque were measured and the correlation between the current and the torque was obtained through linear square fits. Based on the correlation the acquired motor current during drilling was applied to predict the drilling torque in consequent testing and the prediction results were compared to the measured torque. The comparison leads a conclusion that the motor current during drilling using electrical power may be a good indicator to estimate/determine strength characteristics of the ground.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.