• Title/Summary/Keyword: Prediction Analysis

Search Result 9,950, Processing Time 0.047 seconds

An XML-Based Analysis Tool for Gene Prediction Results (XML기반의 유전자 예측결과 분석도구)

  • Kim Jin-Hong;Byun Sang-Hee;Lee Myung-Joon;Park Yang-Su
    • The KIPS Transactions:PartD
    • /
    • v.12D no.5 s.101
    • /
    • pp.755-764
    • /
    • 2005
  • Recently, as it is considered more important to identify the function of ail unknown genes in living things, many tools for gene prediction have been developed to identify genes in the DNA sequences. Unfortunately, most of those tools use their own schemes to represent their programs results, requiring researchers to make additional efforts to understand the result generated by them So, it is desirable to provide a standardized method of representing predicted gene information, which makes it possible to automatically produce the predicted results for a given set of gene data In this paper, we describe an effective U representation for various predicted gene information, and present an XML-based analysis tool for gene predication results based on this representation. The developed system helps users of gene prediction tools to conveniently analyze the predicted results and to automatically produce the statistical results of the prediction. To show the usefulness of the tool, we applied our programs to the results generated by GenScan and GeneID, which are widely used gene prediction systems.

Hazard prediction of coal and gas outburst based on fisher discriminant analysis

  • Chen, Liang;Wang, Enyuan;Feng, Junjun;Wang, Xiaoran;Li, Xuelong
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.861-879
    • /
    • 2017
  • Coal and gas outburst is a serious dynamic disaster that occurs during coal mining and threatens the lives of coal miners. Currently, coal and gas outburst is commonly predicted using single indicator and its critical value. However, single indicator is unable to fully reflect all of the factors impacting outburst risk and has poor prediction accuracy. Therefore, a more accurate prediction method is necessary. In this work, we first analyzed on-site impacting factors and precursors of coal and gas outburst; then, we constructed a Fisher discriminant analysis (FDA) index system using the gas adsorption index of drilling cutting ${\Delta}h_2$, the drilling cutting weight S, the initial velocity of gas emission from borehole q, the thickness of soft coal h, and the maximum ratio of post-blasting gas emission peak to pre-blasting gas emission $B_{max}$; finally, we studied an FDA-based multiple indicators discriminant model of coal and gas outburst, and applied the discriminant model to predict coal and gas outburst. The results showed that the discriminant model has 100% prediction accuracy, even when some conventional indexes are lower than the warning criteria. The FDA method has a broad application prospects in coal and gas outburst prediction.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

Prediction of Land-cover Change in the Gongju Areas using Fuzzy Logic and Geo-spatial Information (퍼지 논리와 지리공간정보를 이용한 공주지역 토지피복 변화 예측)

  • Jang, Dong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.6
    • /
    • pp.387-402
    • /
    • 2005
  • In this study, we tried to predict the change of future land-cover and relationships between land-cover change and geo-spatial information in the Gongju area by using fuzzy logic operation. Quantitative evaluation of prediction models was carried out using a prediction rate curve using. Based on the analysis of correlations between the geo-spatial information and land-cover change, the class with the highest correlation was extracted. Fuzzy operations were used to predict land-cover change and determine the land-cover prediction maps that were the most suitable. It was predicted that in urban areas, the urban expansion of old and new towns would occur centering on the Gem-river, and that urbanization of areas along the interchange and national roads would also expand. Among agricultural areas, areas adjacent to national roads connected to small tributaries of the Gem-river and neighboring areas would likely experience changes. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the possibility of forest damage is very high. As a result of validation using the prediction rate curve, it was indicated that among fuzzy operators, the maximum fuzzy operator was the most suitable for analyzing land-cover change in urban and agricultural areas. Other fuzzy operators resulted in the similar prediction capabilities. However, in the prediction rate curve of integrated models for land-cover prediction in the forest areas, most fuzzy operators resulted in poorer prediction capabilities. Thus, it is necessary to apply new thematic maps or prediction models in connection with the effective prediction of changes in the forest areas.

Domain Analysis of Research on Prediction and Analysis of Slope Failure by Co-Word Analysis (동시출현단어 분석을 활용한 비탈면 붕괴 예측 및 분석 연구에 관한 지적구조 분석)

  • Kim, Sun-Kyum;Kim, Seung-Hyun
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.307-319
    • /
    • 2021
  • Although it is currently conducting slope management and research using digital technologies such as drones, big data, and artificial intelligence, it is still somewhat insufficient and is still vulnerable to slope failure. For this reason, it is inevitable to present the development direction for research on prediction and analysis of slope failure using the digital technologies to effectively deal with slope failure, which requires a preemptive understanding of prediction and analysis of slope failure. In this paper, we collected literature data based on the Web of Science for five years from January 1, 2016 to December 31, 2020 and analyzed by co-word analysis to identify the domain structure of research on prediction and analysis of slope failure. Detailed subject areas were identified through network analysis, and the domain relationships between keywords were visualized to derive global and regionally oriented keywords through relationship, centrality analysis. In addition, the clusters formed by performing cluster analysis were displayed on the multidimensional scailing map, and the domain structure according to the correlation between each keyword was presented. The results of this study reveal the domain structure of research on prediction and analysis of slope failure, and are expected to be usefully used to find future research directions.

Study on the Prediction Technique of Vehicle Performance Using Parameter Analysis (파라미터 해석을 통한 차량 성능 예측 기법 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook;Kim, Jin-Taek
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.995-1000
    • /
    • 2010
  • With the development of the auto industry, the automobile manufacturers demand to shorten development period and reduce the cost. Compared with the traditional method, applying the virtual prototype is more economical. This paper presents a method for parameters sensitivity analysis and optimizing the performance of vehicle noise and vibration. The existing design processes were repeatedly analyzed with a focus on vehicle performance to decide the design parameters of dimension, thickness, mounting type of body and chassis systems in the vehicle development period. This paper describes the prediction technique of vehicle performance using L18 orthogonal array layout, quality deviation analysis and parameter sensitivity analysis for robust design. This paper analyzed the performance correlation equation through the frequency and sensitivity database according to a design factor change. The new concept is that the performance prediction is possible without repeated activities of test and analysis. This paper described the parameter analysis applications such as bush dynamic stiffness and bush void direction of rear suspension. Design engineer could efficiently decide the design variable using parameter analysis database in early design stage. These improvements can reduce man hour and test development period as well as to achieve stable NVH performance.

Water Demand Forecasting by Characteristics of City Using Principal Component and Cluster Analyses

  • Choi, Tae-Ho;Kwon, O-Eun;Koo, Ja-Yong
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2010
  • With the various urban characteristics of each city, the existing water demand prediction, which uses average liter per capita day, cannot be used to achieve an accurate prediction as it fails to consider several variables. Thus, this study considered social and industrial factors of 164 local cities, in addition to population and other directly influential factors, and used main substance and cluster analyses to develop a more efficient water demand prediction model that considers unique localities of each city. After clustering, a multiple regression model was developed that proved that the $R^2$ value of the inclusive multiple regression model was 0.59; whereas, those of Clusters A and B were 0.62 and 0.74, respectively. Thus, the multiple regression model was considered more reasonable and valid than the inclusive multiple regression model. In summary, the water demand prediction model using principal component and cluster analyses as the standards to classify localities has a better modification coefficient than that of the inclusive multiple regression model, which does not consider localities.

Application Method of Logistic Regression Analysis for Annoyance Prediction Model Based on Predicted Noise Level (예측소음도를 이용한 어노이언스 예측모델을 위한 로지스틱 회귀분석의 적용방법)

  • Son, Jin-Hee;Lee, Kun;Choung, Tae-Ryang;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.555-561
    • /
    • 2010
  • Predicted noise level has been used to assess the annoyance response since noise map was generalized and being the normal method to assess the environmental noise. Unfortunately using predicted noise level to derive the annoyance prediction curve caused some problems. The data have to be grouped manually to use the annoyance prediction curve. The aim of this paper is to propose the method to handle the predicted noise level and the survey data for annoyance prediction curve. This paper used the percentage of persons annoyed(%A) and the percentage of persons highly annoyed as the descriptor of noise annoyance in a population. The logistic regression method was used for deriving annoyance prediction curve. It is concluded that the method of dichotomizing data and logistic regression was suitable to handle the predicted noise level and survey data.

Intelligent Traffic Prediction by Multi-sensor Fusion using Multi-threaded Machine Learning

  • Aung, Swe Sw;Nagayama, Itaru;Tamaki, Shiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.430-439
    • /
    • 2016
  • Estimation and analysis of traffic jams plays a vital role in an intelligent transportation system and advances safety in the transportation system as well as mobility and optimization of environmental impact. For these reasons, many researchers currently mainly focus on the brilliant machine learning-based prediction approaches for traffic prediction systems. This paper primarily addresses the analysis and comparison of prediction accuracy between two machine learning algorithms: Naïve Bayes and K-Nearest Neighbor (K-NN). Based on the fact that optimized estimation accuracy of these methods mainly depends on a large amount of recounted data and that they require much time to compute the same function heuristically for each action, we propose an approach that applies multi-threading to these heuristic methods. It is obvious that the greater the amount of historical data, the more processing time is necessary. For a real-time system, operational response time is vital, and the proposed system also focuses on the time complexity cost as well as computational complexity. It is experimentally confirmed that K-NN does much better than Naïve Bayes, not only in prediction accuracy but also in processing time. Multi-threading-based K-NN could compute four times faster than classical K-NN, whereas multi-threading-based Naïve Bayes could process only twice as fast as classical Bayes.

Variability of Short Term Creep Rupture Time and Life Prediction in Stainless Steels (스테인리스 강의 단시간 크리프 파단시간의 변동성과 수명예측)

  • Jung, Won-Taek;Kong, Yu-Sik;Kim, Seon-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.97-102
    • /
    • 2010
  • This paper deals with the variability of short term creep rupture time based on previous creep rupture tests and the statistical methodology of the creep life prediction. The results of creep tests performed using constant uniaxial stresses at 600, 650, and $700^{\circ}C$ elevated temperatures were used for a statistical analysis of the inter-specimen variability of the short term creep rupture time. Even under carefully controlled identical testing conditions, the observed short-term creep rupture time showed obvious inter-specimen variability. The statistical aspect of the short term creep rupture time was analyzed using a Weibull statistical analysis. The effect of creep stress on the variability of the creep rupture time was decreased with an increase in the stress level. The effect of the temperature on the variability also decreased with increasing temperature. A long term creep life prediction method that considers this statistical variability is presented. The presented method is in good agreement with the Lason-Miller Parameter (LMP) life prediction method.