• Title/Summary/Keyword: Predicting model

Search Result 3,901, Processing Time 0.03 seconds

Development of Prediction Models of Dressroom Surface Condensation - A nodal network model and a data-driven model - (드레스룸 표면 결로 발생 예측 모델 개발 - 노달 모델과 데이터 기반 모델 -)

  • Ju, Eun Ji;Lee, June Hae;Park, Cheol-Soo;Yeo, Myoung Souk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • The authors developed a nodal network model that simulates the flow of moist air and the thermal behavior of a target area. The nodal network model was enhanced using a parameter estimation technique based on the measured temperature, humidity, and schedule data. However, the nodal model is not good enough for predicting humidity of the target space, having 55.6% of CVRMSE. It is because re-evaporation effect could not be modeled due to uncertain factors in the field measurement. Hence, a data-driven model was introduced using an artificial neural network (ANN). It was found that the data-driven model is suitable for predicting the condensation compared to the nodal model satisfying ASHRAE Guideline with 3.36% of CVRMSE for temprature, relative humidity, and surface temperature on average. The model will be embedded in automated devices for real-time predictive control, to minimize the risk of surface condensation at dressroom in an apartment housing.

Strut-tie model evaluation of behavior and strength of pre-tensioned concrete deep beams

  • Yun, Young Mook
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.267-291
    • /
    • 2005
  • To date, many studies have been conducted for the analysis and design of reinforced concrete members with disturbed regions. However, prestressed concrete deep beams have not been the subject of many investigations. This paper presents an evaluation of the behavior and strength of three pre-tensioned concrete deep beams failed by shear and bond slip of prestressing strands using a nonlinear strut-tie model approach. In this approach, effective prestressing forces represented by equivalent external loads are gradually introduced along strand's transfer length in the nearest strut-tie model joints, the friction at the interface of main diagonal shear cracks is modeled by the aggregate interlock struts along the direction of the cracks in strut-tie model, and an algorithm considering the effect of bond slip of prestressing strands in the strut-tie model analysis and design of pre-tensioned concrete members is implemented. Through the strut-tie model analysis of pre-tensioned concrete deep beams, the nonlinear strut-tie model approach proved to present effective solutions for predicting the essential aspects of the behavior and strength of pre-tensioned concrete deep beams. The nonlinear strut-tie model approach is capable of predicting the strength and failure modes of pre-tensioned concrete deep beams including the anchorage failure of prestressing strands and, accordingly, can be employed in the practical and precise design of pre-tensioned concrete deep beams.

Digital Signage System Based on Intelligent Recommendation Model in Edge Environment: The Case of Unmanned Store

  • Lee, Kihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.599-614
    • /
    • 2021
  • This paper proposes a digital signage system based on an intelligent recommendation model. The proposed system consists of a server and an edge. The server manages the data, learns the advertisement recommendation model, and uses the trained advertisement recommendation model to determine the advertisements to be promoted in real time. The advertisement recommendation model provides predictions for various products and probabilities. The purchase index between the product and weather data was extracted and reflected using correlation analysis to improve the accuracy of predicting the probability of purchasing a product. First, the user information and product information are input to a deep neural network as a vector through an embedding process. With this information, the product candidate group generation model reduces the product candidates that can be purchased by a certain user. The advertisement recommendation model uses a wide and deep recommendation model to derive the recommendation list by predicting the probability of purchase for the selected products. Finally, the most suitable advertisements are selected using the predicted probability of purchase for all the users within the advertisement range. The proposed system does not communicate with the server. Therefore, it determines the advertisements using a model trained at the edge. It can also be applied to digital signage that requires immediate response from several users.

A Strategy of Assessing Climate Factors' Influence for Agriculture Output

  • Kuan, Chin-Hung;Leu, Yungho;Lee, Chien-Pang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1414-1430
    • /
    • 2022
  • Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.

Utilizing Artificial Neural Networks for Establishing Hearing-Loss Predicting Models Based on a Longitudinal Dataset and Their Implications for Managing the Hearing Conservation Program

  • Thanawat Khajonklin;Yih-Min Sun;Yue-Liang Leon Guo;Hsin-I Hsu;Chung Sik Yoon;Cheng-Yu Lin;Perng-Jy Tsai
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.220-227
    • /
    • 2024
  • Background: Though the artificial neural network (ANN) technique has been used to predict noise-induced hearing loss (NIHL), the established prediction models have primarily relied on cross-sectional datasets, and hence, they may not comprehensively capture the chronic nature of NIHL as a disease linked to long-term noise exposure among workers. Methods: A comprehensive dataset was utilized, encompassing eight-year longitudinal personal hearing threshold levels (HTLs) as well as information on seven personal variables and two environmental variables to establish NIHL predicting models through the ANN technique. Three subdatasets were extracted from the afirementioned comprehensive dataset to assess the advantages of the present study in NIHL predictions. Results: The dataset was gathered from 170 workers employed in a steel-making industry, with a median cumulative noise exposure and HTL of 88.40 dBA-year and 19.58 dB, respectively. Utilizing the longitudinal dataset demonstrated superior prediction capabilities compared to cross-sectional datasets. Incorporating the more comprehensive dataset led to improved NIHL predictions, particularly when considering variables such as noise pattern and use of personal protective equipment. Despite fluctuations observed in the measured HTLs, the ANN predicting models consistently revealed a discernible trend. Conclusions: A consistent correlation was observed between the measured HTLs and the results obtained from the predicting models. However, it is essential to exercise caution when utilizing the model-predicted NIHLs for individual workers due to inherent personal fluctuations in HTLs. Nonetheless, these ANN models can serve as a valuable reference for the industry in effectively managing its hearing conservation program.

A Study of improving reliability on prediction model by analyzing method Big data (빅데이터 분석방법을 이용한 예측모형의 신뢰도 향상에 관한 연구)

  • Song, Min-Gu;Kim, Sun-Bae
    • Journal of Digital Convergence
    • /
    • v.11 no.6
    • /
    • pp.103-112
    • /
    • 2013
  • Traditional method of establishing prediction model is usually using formal data stored in Data Base. However, nowadays advent of "smart" era brought by ground-breaking development of communication system makes informal data to dominate overall data, such 80% in total. Therefore, conventional method using formal data as establishing predicting model would be untrustworthy means in present. In other words, it is indispensible to make prediction model credible including informal data(SNS, image, video) and semi-formal data(log data). In this study, we increase credibility of predicting model adapting Bigdata method and comparing reliability of conventional measurement to real-data.

A study on the comparison of the predicting performance of quality of injection molded product according to the structure of artificial neural network (인공신경망 구조에 따른 사출 성형폼 품질의 예측성능 차이에 대한 비교 연구)

  • Yang, Dong-Cheol;Lee, Jun-Han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.48-56
    • /
    • 2021
  • The quality of products produced by injection molding process is greatly influenced by the process variables set on the injection molding machine during manufacturing. It is very difficult to predict the quality of injection molded product considering the stochastic nature of manufacturing process, because the process variables complexly affect the quality of the injection molded product. In the present study we predicted the quality of injection molded product using Artificial Neural Network (ANN) method specifically from Multiple Input Single Output (MISO) and Multiple Input Multiple Output (MIMO) perspectives. In order to train the ANN model a systematic plan was prepared based on a combination of orthogonal sampling and random sampling methods to represent various and robust patterns with small number of experiments. According to the plan the injection molding experiments were conducted to generate data that was separated into training, validation and test data groups to optimize the parameters of the ANN model and evaluate predicting performance of 4 structures (MISO1-2, MIMO1-2). Based on the predicting performance test, it was confirmed that as the number of output variables were decreased, the predicting performance was improved. The results indicated that it is effective to use single output model when we need to predict the quality of injection molded product with high accuracy.

Prediction of Venous Trans-Stenotic Pressure Gradient Using Shape Features Derived From Magnetic Resonance Venography in Idiopathic Intracranial Hypertension Patients

  • Chao Ma;Haoyu Zhu;Shikai Liang;Yuzhou Chang;Dapeng Mo;Chuhan Jiang;Yupeng Zhang
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.74-85
    • /
    • 2024
  • Objective: Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology associated with venous sinus stenosis. This study aimed to develop a magnetic resonance venography (MRV)-based radiomics model for predicting a high trans-stenotic pressure gradient (TPG) in IIH patients diagnosed with venous sinus stenosis. Materials and Methods: This retrospective study included 105 IIH patients (median age [interquartile range], 35 years [27-42 years]; female:male, 82:23) who underwent MRV and catheter venography complemented by venous manometry. Contrast enhanced-MRV was conducted under 1.5 Tesla system, and the images were reconstructed using a standard algorithm. Shape features were derived from MRV images via the PyRadiomics package and selected by utilizing the least absolute shrinkage and selection operator (LASSO) method. A radiomics score for predicting high TPG (≥ 8 mmHg) in IIH patients was formulated using multivariable logistic regression; its discrimination performance was assessed using the area under the receiver operating characteristic curve (AUROC). A nomogram was constructed by incorporating the radiomics scores and clinical features. Results: Data from 105 patients were randomly divided into two distinct datasets for model training (n = 73; 50 and 23 with and without high TPG, respectively) and testing (n = 32; 22 and 10 with and without high TPG, respectively). Three informative shape features were identified in the training datasets: least axis length, sphericity, and maximum three-dimensional diameter. The radiomics score for predicting high TPG in IIH patients demonstrated an AUROC of 0.906 (95% confidence interval, 0.836-0.976) in the training dataset and 0.877 (95% confidence interval, 0.755-0.999) in the test dataset. The nomogram showed good calibration. Conclusion: Our study presents the feasibility of a novel model for predicting high TPG in IIH patients using radiomics analysis of noninvasive MRV-based shape features. This information may aid clinicians in identifying patients who may benefit from stenting.

Numerical modelling of shelter effect of porous wind fences

  • Janardhan, Prashanth;Narayana, Harish
    • Wind and Structures
    • /
    • v.29 no.5
    • /
    • pp.313-321
    • /
    • 2019
  • The wind blowing at high velocity in an open storage yard leads to wind erosion and loss of material. Fence structures can be constructed around the periphery of the storage yard to reduce the erosion. The fence will cause turbulence and recirculation behind it which can be utilized to reduce the wind erosion and loss of material. A properly designed fence system will produce lesser turbulence and longer shelter effect. This paper aims to show the applicability of Support Vector Machine (SVM) to predict the recirculation length. A SVM model was built, trained and tested using the experimental data gathered from the literature. The newly developed model is compared with numerical turbulence model, in particular, modified $k-{\varepsilon}$ model along with the experimental results. From the results, it was observed that the SVM model has a better capability in predicting the recirculation length. The SVM model was able to predict the recirculation length at a lesser time as compared to modified $k-{\varepsilon}$ model. All the results are analyzed in terms of statistical measures, such as root mean square error, correlation coefficient, and scatter index. These examinations demonstrate that SVM has a strong potential as a feasible tool for predicting recirculation length.

A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation

  • Jeon, Joongoo;Choi, Wonjun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1749-1757
    • /
    • 2019
  • Predicting lower flammability limits (LFL) of hydrogen has become an ever-important task for safety of nuclear industry. While numerous experimental studies have been conducted, LFL results applicable for the harsh environment are still lack of information. Our aim is to develop a calculated non-adiabatic flame temperature (CNAFT) model to better predict LFL of hydrogen mixtures in nuclear power plant. The developed model is unique for incorporating radiative heat loss during flame propagation using the CNAFT coefficient derived through previous studies of flame propagation. Our new model is more consistent with the experimental results for various mixtures compared to the previous model, which relied on calculated adiabatic flame temperature (CAFT) to predict the LFL without any consideration of heat loss. Limitation of the previous model could be explained clearly based on the CNAFT coefficient magnitude. The prediction accuracy for hydrogen mixtures at elevated initial temperatures and high helium content was improved substantially. The model reliability was confirmed for $H_2-air$ mixtures up to $300^{\circ}C$ and $H_2-air-He$ mixtures up to 50 vol % helium concentration. Therefore, the CNAFT model developed based on radiation heat loss is expected as the practical method for predicting LFL in hydrogen risk analysis.