The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.
본 연구에서는 유튜브 먹방 콘텐츠의 인기를 예측하는 모형을 제안하고 사후 분석을 통하여 먹방 콘텐츠의 인기에 영향을 주는 요인들을 식별하였다. 이를 위해 API와 Pretty Scale을 활용하여 구독자수 상위 먹방 채널들로부터 22,223개 콘텐츠의 정보를 수집하고 Random Forest, XGBoost 및 LGBM 등의 머신러닝 알고리즘을 기반으로 조회수와 좋아요수 예측모델을 구축하였다. SHAP 분석 결과 조회수 예측 모형에서는 구독자수가 예측에 가장 큰 영향을 미치는 반면, 좋아요수 예측 모형에서는 크리에이터의 매력도가 중요변수로 도출되는 등 콘텐츠 조회와 좋아요 반응에 대한 선행요인이 다름을 확인할 수 있었다. 본 연구는 대량의 온라인 콘텐츠를 분석하여 실증 분석을 진행하였다는 점에서 학술적 의의가 있으며 먹방 크리에이터들에게 시청자들의 콘텐츠 소비 경향을 알려주고 상품성 높은 콘텐츠 제작의 가이드를 제공한다는 점에서 실무적인 의의를 지닌다.
In social network services, such as Facebook, Google+, Twitter, and certain postings attract more people than others. In this paper, we propose a novel method for predicting the lifespan and retweet times of tweets, the latter being a proxy for measuring the popularity of a tweet. We extract information from retweet graphs, such as posting times; and social, local, and content features, so as to construct prediction knowledge bases. Tweets with a similar topic, retweet pattern, and properties are sequentially extracted from the knowledge base and then used to make a prediction. To evaluate the performance of our model, we collected tweets on Twitter from June 2012 to October 2012. We compared our model with conventional models according to the prediction goal. For the lifespan prediction of a tweet, our model can reduce the time tolerance of a tweet lifespan by about four hours, compared with conventional models. In terms of prediction of the retweet times, our model achieved a significantly outstanding precision of about 50%, which is much higher than two of the conventional models showing a precision of around 30% and 20%, respectively.
오늘날 인터넷 사용자들은 유튜브(YouTube)와 같은 온라인 콘텐츠 공유 사이트를 통해 손쉽게 자신의 콘텐츠를 만들고 다른 사람들과 공유하고 있다. 그로 인해 하루에도 엄청난 양의 온라인 콘텐츠들이 쏟아지고 있다. 온라인 콘텐츠들의 홍수 속에서 어떤 콘텐츠가 향후에 인기가 있을 것인지를 예측하는 문제는 일반 이용자들이나 콘텐츠 공유 사이트 운영자들 모두가 관심을 가지는 문제이다. 본 논문에서는 인터넷 토론 게시판에 등록된 게시물들의 인기도를 예측하는 방법을 제안한다. 본 논문에서는 인터넷 토론 게시판에 등록된 게시물들의 인기도를 예측하기 위해 게시물의 조회수를 인기 척도로 간주하고 각 게시물의 조회수 변화량을 분석하였다. 게시물의 최종 조회수를 예측하기 위하여 관찰된 조회수 시계열 데이터를 이용하여 지수 함수를 기반으로 하는 조회수 증가 모델을 제안한다. 다음 아고라 게시판의 게시물을 대상으로 한 실험에서 전체 실험 게시물 중 약 90.7%인 20,532개의 게시물이 예측 오차가 10개 이하로 나타났다.
TV 드라마 한 시즌 제작에 최소 수십 억 원이 투입되지만 투자 대비 효과 예측은 쉽지 않으며 참여 인력의 중요성에도 불구하고 그들에 대한 적절한 평가지표는 아직 존재하지 않는다. 그 동안 콘텐츠 평가지표로 널리 사용되어온 시청률 절대 수치는 지속 감소하고 있지만 대체할만한 지표는 아직 없는 상태다. 본 연구에서는 시청률 절대 수치가 아니라 개별 드라마 시청률 간 상대적 우위를 반응변수로 하고, 드라마 참여 인력이 과거에 획득하여 축적한 상대적 우위를 계량 능력지표화 하여 설명변수로 설계함으로써 드라마의 상대적 흥행성을 예측하는 모형을 개발하였다. 예측 모형으로는 다양한 머신러닝 알고리즘을 활용하였고 예측 성능을 높이기 위해 기존 연구에서 유용한 것으로 판명된 설명변수를 추가하여 조합하였다. 결과적으로 본 연구에서 설계한 설명변수와 기존 연구의 설명변수로부터 최적의 조합을 탐색하여 구축한 예측 모형은 84%의 높은 정분류율로 우수한 예측 성능을 보여주었다. 이렇게 본 연구에서는 TV 드라마 참여 인력 능력지표와 시청률을 활용하여 콘텐츠의 상대적 흥행성을 예측함으로써 콘텐츠 산업 전반 투자 효율화와 활성화를 촉진하려 한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.4090-4102
/
2018
After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.
Emotion recognition is one of the most important and challenging areas of computer vision. Nowadays, many studies on emotion recognition were conducted and the performance of models is also improving. but, more research is needed on emotion recognition and sentiment analysis of video viewers. In this paper, we propose an emotion analysis system the includes a sentiment analysis model and an interest prediction model. We analyzed the emotional patterns of people watching popular and unpopular videos and predicted the level of interest using the emotion analysis system. Experimental results showed that certain emotions were strongly related to the popularity of videos and the interest prediction model had high accuracy in predicting the level of interest.
Social media has immense popularity among all services today. Data from social network services (SNSs) can be used for various objectives, such as text prediction or sentiment analysis. There is a great deal of Korean and English data on social media that can be used for sentiment analysis, but handling such huge amounts of unstructured data presents a difficult task. Machine learning is needed to handle such huge amounts of data. This research focuses on predicting Korean and English sentiment using deep forward neural network with a deep learning architecture and compares it with other methods, such as LDA MLP and GENSIM, using logistic regression. The research findings indicate an approximately 75% accuracy rate when predicting sentiments using DNN, with a latent Dirichelet allocation (LDA) prediction accuracy rate of approximately 81%, with the corpus being approximately 64% accurate between English and Korean.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권5호
/
pp.1414-1430
/
2022
Due to the Internet of Things popularity, many agricultural data are collected by sensors automatically. The abundance of agricultural data makes precise prediction of rice yield possible. Because the climate factors have an essential effect on the rice yield, we considered the climate factors in the prediction model. Accordingly, this paper proposes a machine learning model for rice yield prediction in Taiwan, including the genetic algorithm and support vector regression model. The dataset of this study includes the meteorological data from the Central Weather Bureau and rice yield of Taiwan from 2003 to 2019. The experimental results show the performance of the proposed model is nearly 30% better than MARS, RF, ANN, and SVR models. The most important climate factors affecting the rice yield are the total sunshine hours, the number of rainfall days, and the temperature.The proposed model also offers three advantages: (a) the proposed model can be used in different geographical regions with high prediction accuracies; (b) the proposed model has a high explanatory ability because it could select the important climate factors which affect rice yield; (c) the proposed model is more suitable for predicting rice yield because it provides higher reliability and stability for predicting. The proposed model can assist the government in making sustainable agricultural policies.
블로그는 사용자에게 자신의 의견을 표현하고 다른 사람들의 의견을 수렴할 수 있는 자유로운 의사표현 네트워크를 제공한다. 어떤 글은 사회적, 정치적 이슈를 몰고 다니기도 하며 또 어떤 글은 사용자의 관심을 끌지 못하고 지나가기도 한다. 글이 작성된 초기에 향후 얼마나 인기를 얻을지 예측한다는 것은 글의 저자, 블로거, 광고회사 그리고 웹호스팅 모두에게 흥미로울 것이다. 인기를 예측하기 위한 다양한 연구들이 진행되어 왔지만 대부분의 연구들이 사용자간의 상호연관성에 기반하고 있고 정확한 값으로 표현하는데 높은 에러율을 발생하고 있다. 본 논문에서는 블로그에 글이 작성된 초기에 향후 글의 인기를 예측하기 위해 조회수를 사용하여 글의 인기를 4타입(explosion, hot, warm, cold)의 가상 온도로 예측하는 방법을 제안한다. 먼저 글의 포화시점을 정의하고, 초기 조회수와 포화시점 조회수의 관계를 통해 포화시점 조회수를 예측하는 모델링 공식을 유도하였다. 예측된 포화시점 조회수를 이용하여 글의 인기를 4타입의 가상 온도로 표현하였다. 초기 관찰기간에 따라 예측 정확률이 결정되고 있다. 실험결과 30분 이후부터 MAPE(Mean Absolute Percentage Error)가 30%이하로 낮아졌지만, explosive 타입의 경우 초기 조회수로 예측하기 힘들었다. explosive를 제외한 hot, warm, cold 타입에서는 30분후부터 86%이상의 평균 예측 정확률을 보여주며, 70분후부터는 90%이상의 평균 예측 정확률을 보여주고 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.