• Title/Summary/Keyword: Predicted exposure concentration (PEC)

Search Result 13, Processing Time 0.017 seconds

Distribution of the fungicide hexaconazole in internal organs of carp (Cyprinus carpio L.) (살균제 hexaconazole의 잉어(Cyprinus carpio L.) 장기 중 분포)

  • Lee, Eun-Young;Park, In-Young;Kim, Byung-Seok;Park, Yeon-Ki;You, Oh-Jong;Park, Kyung-Hun;Kim, Kyun;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.217-221
    • /
    • 2007
  • In order to elucidate the behavior of the fungicide hexaconazole (1-(6-chloro-3-pyrldyhnethyl)N-nitroimidazolidin-2-ylideneamine) in carp (Cyprinus carpio L.), carps were exposed to [$^{14}C$]hexaconazole at a predicted environmental concentration (PEC) of 0.32 mg $L^{-1}$ for 4 days under static conditions. Hexaconazole in water was absorbed into carps to reach the maximum concentration 2 days after exposure. The amounts of the [$^{14}C$]hexaconazole and its metabolites absorbed in gall were much higher than those in the other organs and especially those in gall 2 days after exposure were 25 and 67 times higher than those in liver and kidney, respectively, strongly suggesting that biliary excretion involving enterohepatic recirculation could be an import route for the elimination of hexaconazole absorbed in carps.

Effects of Butachlor on Growth of Four Freshwater Algae (Butachlor의 4종 담수조류(freshwater algae)에 대한 생장영향)

  • Park, Yeon-Ki;Bae, Chul-Han;Kim, Byung-Seok;Park, Kyung-Hoon;Lee, Jea-Bong;Shin, Jin-Sup;Hong, Soon-Sung;Cho, Kyung-Won;Lee, Kyu-Seung;Lee, Jung-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • Algae are vital in the primary production of the aquatic ecosystem, having been considered as good indicators of the bioactivity of pesticides. Algae have short life cycle, respond quickly to environmental change and their diversity and density can indicate the quality of their habitat. The purpose of the study was to determine the growth inhibition effects of butachlor (Tech. 93.4%) and $K_2Cr_2O_7$ (Tech. 99.5%) in Selenastrum capriconutum, Scenedesmus subspicatus, Chlorella vulgaris and Nitzschia palea during and exposure period of 72 hours. The toxicological responses of S. capriconutum, S. subspicatus, C. vulgaris and N. Palea to butachlor, expressed in individual $ErC_{50}$ values were 0.0022, 0.019, 8.67 and $4.94\;mg\;L^{-1}$, respectively. NOEC values were 0.0008, 0.0016, 5.34 and $2.92\;mg\;L^{-1}$, respectively. S. capriconutum was more sensitive than the other algae species. The toxicological responses of S. capriconutum, S. subspicatus, C. vulgaris and N. palea to $K_2Cr_2O_7$ expressed as $ErC_{50}$ values were 0.91, 0.78, 0.85 and $0.57\;mg\;L^{-1}$, respectively. NOEC values were 0.2, 0.2, 0.2 and $0.18\;mg\;L^{-1}$, respectively. Growth inhibition of S. capriconutum, S. subspicatus, C. vulgaris and N. palea from PEC of butachlor were 100, 75, 0 and 0%, respectively.

The Risk Assessment of Butachlor for the Freshwater Aquatic Organisms (Butachlor의 수서생물에 대한 위해성 평가)

  • Park, Yeon-Ki;Bae, Chul-Han;Kim, Byung-Seok;Lee, Jea-Bong;You, Are-Sun;Hong, Soon-Sung;Park, Kyung-Hoon;Shin, Jin-Sup;Hong, Moo-Ki;Lee, Kyu-Seung;Lee, Jung-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • To assess the effect of butachlor on freshwater aquatic organisms, acute toxicity studies for algae, invertebrate and fishes were conducted. The algae grow inhibition studies were carried out to determine the growth inhibition effects of butachlor (Tech. 93.4%) in Pseudokirchneriella subcapitata (formerly knows as Selenastrum capriconutum), Desmodesmus subspicatus (formerly known as Scendusmus subspicatus), and Chlorella vulgaris during the exposure period of 72 hours. The toxicological responses of P. subcapitata, D. subspicatus, and C. vulgaris to butachlor, expressed in individual $ErC_{50}$ values were 0.002, 0.019, and $10.4mgL^{-1}$, respectively and NOEC values were 0.0008, 0.0016, and $5.34mg\;L^{-1}$, respectively. P. subcapitata was more sensitive than any other algae species. Butachlor has very high toxicity to the algae, such as P. subcapitata and D. subspicatu. In the acute immobilisation test for Daphnia magna, the 24 and $48h-EC_{50}$ values were 2.55 and $1.50mg\;L^{-1}$, respectively. As the results of the acute toxicity test on Cyprinus carpio, Oryzias latipes and Misgurnus anguillicaudatus, the $96h-LC_{50}s$ were 0.62, 0.41 and $0.24mg\;L^{-1}$, respectively. The following ecological risk assessment of butachlor was performed on the basis of the toxicological data of algae, invertebrate and fish and exposure concentrations in rice paddy, drain and river. When a butachlor formulation is applied in rice paddy field according to label recommendation, the measured concentration of butachlor in paddy water was $0.41mg\;L^{-1}$ and the predicted environmental concentration (PEC) of butachlor in drain water was $0.03 mg\;L^{-1}$. Residues of butachlor detected in major rivers between 1997 and 1998 were ranged from $0.0004mg\;L^{-1}$ to $0.0029mg\;L^{-1}$. Toxicity exposure ratios (TERs) of algae in rice paddy, drain and river were 0.004, 0.05 and 0.36, respectively and indicated that butachlor has a risk to algae in rice paddy, drain and river. On the other hand, TERs of invertebrate in rice paddy, drain and river were 3.6, 50 and 357, respectively, well above 2, indicating no risk to invertebrate. TERs of fish in rice paddy, drain and river were 0.58, 8 and 57, respectively. The TERs for fish indicated that butachlor poses a risk to fish in rice paddy but has no risk to fish in agricultural drain and river. In conclusion, butachlor has a minimal risk to algae in agricultural drain and river exposed from rice drainage but has no risk to invertebrate and fish.