• Title/Summary/Keyword: Precursor Powder

Search Result 344, Processing Time 0.026 seconds

Preparation of the Copper Oxalate Powder by Ethanol Oxalic Acid Method (수산에타놀법을 이용한 수산동 분말의 합성)

  • Choi, H.L.;Lee, B.W.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.124-129
    • /
    • 2005
  • Copper oxide, CuO, are very important components include of high temperature super- conductors, and widely used. The properties of sintered materials were affected by the size and shape of copper oxide with starting materials in the solid-phase reaction. A homogeneous and fine CuO powder was prepared by thermal decomposition of the copper oxalate precursor. Copper oxalate was precipitated by the addition of copper nitrate solution to an oxalic acid solution. The influence of various factors such as temperature, pH, concentration as well as ultrasonic irradiation in the solution were investigated.

  • PDF

Distribution of Deposited Carbon in Carbon Brake Disc Made by Pressure-Gradient Chemical Vapor Infiltration

  • Chen, Jianxun;Xiong, Xiang
    • Carbon letters
    • /
    • v.8 no.1
    • /
    • pp.25-29
    • /
    • 2007
  • The carbon brake discs were manufactured by densification the carbon fiber preform using PG-CVI technology with Propene as a carbon precursor gas and Nitrogen as a carrier gas. The densities of carbon brake discs were tested at different densification time. The results indicate that the densification rate is more rapid before 100 hrs than after 200 hrs. The CTscanning image and the SEM technology were used to observe the inner subtle structure. CT-images show the density distribution in the carbon brake disc clearly. The carbon brake disk made by PG-CVI is not very uniform. There is a density gradient in the bulk. The high-density part in the carbon brake is really located in the friction surface, especially in the part of inner circle. This density distribution is most suitable for the stator disc.

Synthesis of Tantalum Oxy-nitride and Nitride using Oxygen Dificiency Tantalum Oxides (산소결핍 탄탈륨 산화물을 활용한 탄탈륨 산질화물 및 질화물 합성)

  • Park, Jong-Chul;Pee, Jae-Hwan;Kim, Yoo-Jin;Choi, Eui-Seock
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.489-495
    • /
    • 2008
  • Colored tantalum oxy-nitride (TaON) and tantalum nitride ($Ta_{3}N_{5}$) were synthesized by ammonolysis. Oxygen deficient tantalum oxides ($TaO_{1.7}$) were produced by a titration process, using a tantalum chloride ($TaCl_5$) precursor. The stirring speed and the amount of $NH_{4}OH$ were important factors for controling the crystallinity of tantalum oxides. The high crystallinity of tantalum oxides improved the degree of nitridation which was related to the color value. Synthesized powders were characterized by XRD, SEM, TEM and Colorimeter.

Chemical Design of Highly Water-Soluble Ti, Nb and Ta Precursors for Multi-Component Oxides

  • Masato Kakihana;Judith Szanics;Masaru Tada
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.893-896
    • /
    • 1999
  • Novel citric acid based Ti, Nb and Ta precursors that are highly stable in the presence of water were developed. No alkoxides of Ti, Nb and Ta were utilized in the preparation, instead much less moisture-sensitive metallic Ti, NbCl5 and TaCl5 were chosen as starting chemicals for Ti, Nb and Ta, respectively. The feasibility of these chemicals as precursors is demonstrated in the powder synthesis of BaTi4O9, Y3NbO7 and LiTaO3. The water-resistant Ti precursor was employed as a new source of water-soluble Ti in the amorphous citrate method, and phase pure BaTi4O9 in powdered form was successfully synthesized at 800 ?. The Pechini-type polymerizable complex method using the water-resistant Nb and Ta precursors was applied to the synthesis of Y3NbO7 and LiTaO3, and both the powder materials in their pure form were successfully synthesized at reduced tempera-tures, viz. 500-700 ?. The remarkable retardation of hydrolysis of these water-resistant precursors is explained in terms of the partial charge model theory.

Crystallization of Forsterite Xerogel under Carbon Dioxide: A New Crystalline Material Synthesized by Homogeneous Distribution of Carbonaceous Component into Forsterite Xerogel

  • 송미영;김수주;권혜영;박선희;박동곤;권호진;권영욱;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.517-524
    • /
    • 1999
  • By heating the magnesiumsilicate (Mg2SiO4:forsterite) xerogel in carbon dioxide, carbonaceous component was intentionally introduced into the amorphous solid precursor. Carbon was introduced homogeneously as unidentate carbonate. Upon being heated at 800 。C in carbon dioxide, the xerogel which had homogeneously distributed carbonaceous component in it crystallized into a single phase product of a new crystalline material, which had approximate composition of Mg8Si4Ol8C. The powder X-ray diffraction pattern of the new crystalline material did not match with any known crystalline compound registered in the powder diffraction file. Crystallization from amorphous xeroget to the new crystalline phase occurred in a very narrow range of temperature, from 750 。C to 850 。C in carbon dioxide, or in dty oxygen. Upon being heated above 850 。C, carbonaceous component was expelled from the product, accompanied by irreversible transition from the new crystalline material to forsterite.

Synthesis of Fine Copper Powders from CuO-H2O Slurry by Wet-reduction Method (액상환원법에 의한 CuO-H2O 슬러리로부터 미세 구리분말의 제조)

  • Ahn Jong-Gwan;Kim Dong-Jin;Lee Ik-Kyu;Lee Jaeryeung;Huanzhen Liang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • Ultrafine copper powder was prepared from $CuO-H_2O$ slurry with hydrazine, a reductant, under $70^{\circ}C$. The influence of various reaction parameters such as temperature, reaction time, molar ratio of $N_2H_4$, PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of $N_2H_4/Cu$ and the temperature. When the ratio of $N_2H_4/Cu$ was higher than 2.5 and the temperature was higher than $60^{\circ}C$, CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about $0.5{\mu}m$.

Preparation of Highly Efficient Nd-Fe-B Magnetic Powders by Reduction/Diffusion Process (환원/확산 공정에 의한 고성능 Nd-Fe-B 자성분말의 제조)

  • Kim, Dongsoo;Chen, Chunqiang;Baek, Younkyoung;Choi, Chuljin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 2013
  • A novel route to prepare Nd-Fe-B magnetic particles by utilizing both spray drying and reduction/diffusion processes was investigated in this study. Precursors were prepared by spray drying method using the aqueous solutions containing Nd salt, Fe salt and boric acid with stoichiometric ratios. Precursor particles could be obtained with various sizes from 2 to $10{\mu}m$ by controlling concentrations of the solutions and the average size of $2{\mu}m$ of precursors were selected for further steps. After heat treatment of precursors in air, Nd and Fe oxides were formed through desalting procedure, followed by reduction processes in Hydrogen ($H_2$) atmosphere and with Calcium (Ca) granules in Argon (Ar) successively. Moreover, diffusion between Nd and Fe occurred during Ca reduction and $Nd_2Fe_{14}B$ particles were formed. With Ca amount added to particles after $H_2$ reduction, intrinsic coercivity was changed from 1 to 10 kOe. In order to remove and leach CaO and residual Ca, de-ionized water and dilute acid were used. Acidic solutions were more effective to eliminate impurities, but Fe and Nd were dissolved out from the particles. Finally, $Nd_2Fe_{14}B$ magnetic particles were synthesized after washing in de-ionized water with a mean size of $2{\mu}m$ and their maximum energy product showed 9.23 MGOe.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

Synthesis and Sintering of Cordierite by using Coprecipitation Method (공침법에 의한 Cordierite분말의 합성 및 소결에 관한 연구)

  • 한문희;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.899-906
    • /
    • 1990
  • The cordierite powders were prepared from Mg(NO3)2.6H2O, Al(NO3)3.9H2O and colloidal silica by the coprecippitation method, and the sintering behavior of the powders were investigated. Two different methods were applied for producing the precursor powders. The one was to added the aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O to NH4OH to adjust pH at 10 where the colloidal silica of pH 10 was added. The other wa to add the aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O to the colloidal silica with NH4OH to control the final mixture to be at pH 10. It was confirmed that more homogeneous powders were obtained from the latter method. The firing linear shrinkage of the powder compacts fabricated from the calcined powder between 90$0^{\circ}C$ and 110$0^{\circ}C$ was found to be larger as the calcination temperature was low. But all of them stopped shrinking around 120$0^{\circ}C$. The powder compacts, fabricated using the calcined powders at 90$0^{\circ}C$ and 95$0^{\circ}C$ for 2hours and sintered at 142$0^{\circ}C$ for 2hours, showed relative density of 93-96%, 3-point bending strength of 81-83MPa, KIC of 1.9-2.4 MPam1/2 and thermal expansion coefficient of 0.213-0.732$\times$10-6$^{\circ}C$.

  • PDF

Fabrication of Flake-like LiCoO2 Nanopowders using Electrospinning (전기 방사법을 이용한 플레이크형 LiCoO2 나노 분말의 제조)

  • Koo, Bon-Ryul;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.21 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • Flake-like $LiCoO_2$ nanopowders were fabricated using electrospinning. To investigate their formation mechanism, field-emssion scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were carried out. Among various parameters of electrospinning, we controlled the molar concentration of the precursor and the PVP polymer. When the molar concentration of lithium and cobalt was 0.45 M, the morphology of $LiCoO_2$ nanopowders was irregular and round. For 1.27 M molar concentration, the $LiCoO_2$ nanopowders formed with flake-like morphology. For the PVP polymer, the molar concentration was set to 0.011 mM, 0.026 mM, and 0.043 mM. Irregular $LiCoO_2$ nanopowders were formed at low concentration (0.011 mM), while flake-like $LiCoO_2$ were formed at high concentration (0.026 mM and 0.043 mM). Thus, optimized molar concentration of the precursor and the PVP polymer may be related to the successful formation of flake-like $LiCoO_2$ nanopowders. As a results, the synthesized $LiCoO_2$ nanopowder can be used as the electrode material of Li-ion batteries.