• 제목/요약/키워드: Precooler system

검색결과 10건 처리시간 0.019초

동결농축법을 이용한 폐수처리시스템의 에너지 효율 향상에 관한 연구 (A study on energy efficiency improvement of waste-water treatment system by freeze concentration method)

  • 김정식;임승택;오철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.467-476
    • /
    • 2013
  • 동결농축법은 열역학적 효율이 높고 에너지 소비량이 작으며 처리수를 재활용할 수 있는 장점을 가지고 있다. 본 연구에서는 중소규모로 상용화 가능한 동결농축폐수처리시스템을 설계하고, 각 시스템의 에너지 소비효율과 일일처리량을 비교하여 시스템 개발방향을 제안하고자 하였다. 시스템을 완속운전시스템과 급속운전시스템으로 각각 모델링하고 해석을 통해 소비동력과 운전시간을 계산하여 비교한 다음 설계처리량에 따른 변화를 추가 검토하였다. 연구결과 급속운전시스템의 소비전력량비가 0.6 Wh/kg 만큼 다소 높으나 일일처리량은 19 % 증가하였으며, 설계처리량이 큰 시스템일수록 소비전력량비가 작아지고 일일처리량이 큰 결과를 얻었다.

절전형 제빙시설 사이클 모사를 통한 성능 및 경제성 해석 (Analysis of Performance and Economical Efficiency through Cycle Simulation for Power Saving BIP(Block Ice Plant))

  • 강종호;김남진;이재용;김종보
    • 설비공학논문집
    • /
    • 제13권6호
    • /
    • pp.455-461
    • /
    • 2001
  • Domestic ice making companies make effort to obtain products and neglect to introduce low cost product improvements with energy savings. The work presented here is an implementation of ice making method to improve both energy efficiency and productivity. In this present investigation, several ice making cycles are proposed for higher efficiency in the system. COP(Coefficient of Performance), ice making time and electric energy consumption are evaluated and compared with the conventional system. Results shows that COP is improved with more efficient use of time for ice making and electric consumption. Therefore, this can offer an opportunity for more efficient use of energy and higher productivity in ice making.

  • PDF

Study on the Fundamental Technologies of ATREX Engine

  • Sato, Tetsuya;Kobayashi, Hiroaki;Tanatsugu, Nobuhiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.665-670
    • /
    • 2004
  • This paper reviews the latest studies of the expander cycle Air Turbo Ramjet engine (ATREX) conducted in JAXA. First, a system analysis including the vehicle and trajectory was conducted to optimize the engine cycle and turbo-machine configuration. We selected the precooled turbo-jet cycle for a prototype engine using the near term technologies. Second, a system ground-firing test was conducted to verify a defrosting system for the precooler. Methanol injection with its particles atomization could compensate 80 % of pressure loss caused by the frost. Thirdly, a feasibility of carbon/carbon composites for the engine components was investigated by making complex shapes such as a heat exchanger and a plug nozzle. Basic technologies on the gas leakage, the junction and bonding were also studied. The end of the paper, some basic studies such as wind tunnel tests of a new type air inlet and a plug nozzle are described.

  • PDF

절전형 제빙시설 설계를 위한 사이클 모사 (Cycle Simulations for Power Saving BIP(block ice plant) design)

  • 강종호;김남진;이재용;김종보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.216-221
    • /
    • 2000
  • Most Ice making companies make simple efforts to make products and fail to introduce improvements into the system against huh cost of products. The work presented here is an implementation of ice making method to improve both energy efficiency and productivity. In this present investigation, several ice making cycles are designed and calculated to evaluate COP, ice making time and electric energy consumption. Results obtained shows that COP is improved with more efficient use of time for ice making and electric consumption. Therefore this can offer the opportunity for more efficient energy consumption and productivity in ice making.

  • PDF

LNG냉열이용 BOG 재액화긍정 해석연구 (New reliquefaction system of Boil-Off-Gas by LNG cold energy)

  • 윤상국;최형식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.256-263
    • /
    • 2002
  • The Boil-Off-Gases(BOG) in the LNG production terminal are continuously generated during the unloading, storage and supply processes by the heat penetration. In order to use these gases as useful fuel, the reliquefaction process should be installed to put the reliquefied BOG in the main LNG supply line before the secondary pump in terminal. The current reliquefaction method of BOG in LNG terminal is the direct contact one between LNG and BOG in the absorption column. But the system has severe disadvantage, which is the 10 times of LNG circulation needed for unit mass of BOG reliquefaction. It causes, therefore, high power consumption of LNG circulation pump and excessive city-gas supply, even if short demand of NG is needed in the summer time. In this paper, the new reliquefaction system of BOG by using LNG cold energy with indirect contact in precooler was suggested and analysed. The result showed new indirect contact method of BOG reliquefaction system between LNG cold energy and BOG is much more effective than the current direct contact one because of only about 1.3 times of LNG circulation needed and higher energy saving by pump power reduction.

과냉각기와 팽창장치 후 액기분리기를 적용한 냉동시스템 성능특성 연구 (A Study on the Characteristics of Refrigeration System Installed with Precooler, and Liquid-Vapor Separator after Expansion Device)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제35권1호
    • /
    • pp.40-45
    • /
    • 2011
  • 본 연구의 목적은 팽창장치 후에 설치된 액기분리기와 예냉 열교환기를 갖는 냉동시스템의 특성을 파악하고자 하는 것이다. 냉장고의 전형적 냉매인 냉매 R134a의 팽창공정 후 액기분리기에서 분리된 찬 증기를 이용하여 예냉 열교환기에서 팽창장치에 주입되는 냉매를 과냉시킨다. 분석결과 냉동능력은 8.9% 상승하였으며, COP는 1.4% 증가하였다. 이러한 성능 향상의 이유는 냉매 모리엘선도의 포화액선과 포화기체선의 기울기가 다르기 때문이다.

A review on a 4 K cryogenic refrigeration system for quantum computing

  • Park, Jiho;Kim, Bokeum;Jeong, Sangkwon
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권2호
    • /
    • pp.1-6
    • /
    • 2022
  • This paper reviews the literature that has been published since 1980s related to cryogenic refrigeration systems for quantum computing. The reason why such a temperature level of 10-20 mK is necessary for quantum computing is that the superconducting qubit is sensitive to even very small thermal disturbances. The entanglement of the qubits may not be sustained due to thermal fluctuations and mechanical vibrations beyond their thresholds. This phenomenon is referred to as decoherence, and it causes an computation error in operation. For the stable operation of the quantum computer, a low-vibration cryogenic refrigeration system is imperative as an enabling technology. Conventional dilution refrigerators (DR), so called 'wet' DR, are precooled by liquid helium, but a more convenient and economical precooling method can be achieved by using a mechanical refrigerator instead of liquid cryogen. These 'dry' DRs typically equip pulse-tube refrigerators (PTR) for precooling the DRs around 4 K because of its particular advantage of low vibration characteristic. In this review paper, we have focused on the development status of 4 K PTRs and further potential development issues will be also discussed. A quiet 4 K refrigerator not only serves as an indispensable precooler of DR but also immediately enhances the characteristics of low noise amplifiers (LNA) or other cryo-electronics of various type quantum computers.

Ortho-para 수소변화장치의 설계 및 성능평가 (Design and performance evaluation of ortho-para H2 conversion equipment)

  • 백종훈;강병하
    • 한국수소및신에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.93-100
    • /
    • 1998
  • The ortho-para $H_2$ catalytic conversion equipment has been developed to reduce the evaporation loss from stored liquid hydrogen. The ortho-para $H_2$ conversion heat is evaluated at liquid nitrogen temperature. This problem is of particular interest in the design of the ortho-para $H_2$ converter in a hydrogen liquefaction system. The ortho-para $H_2$ conversion equipment consists of a catalytic converter, a precooler, and a liquid nitrogen bath. 30-90 cc of $Fe(OH)_3$ are employed as a catalyst in the present converter. The conversion heat and conversion effectiveness are evaluated when mass flow rate of hydrogen is in the range of 0.05-l.6 g/min. It is found that the ortho-para conversion heat is increased while conversion effectiveness is decreased as the mass flow rate of hydrogen is increased. Both the ortho-para conversion heat and conversion effectiveness are increased with an increase in the amount of the catalyst.

  • PDF

System Design and Performance Analysis of a Quick Freezer using Supercooling

  • Kim, Jinse;Chun, Ho Hyun;Park, Seokho;Choi, Dongsoo;Choi, Seung Ryul;Oh, Sungsik;Yoo, Seon Mi
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.330-335
    • /
    • 2014
  • Purpose: This study was conducted for enhancing the performance of a conventional quick freezer by introducing the supercooling state, using a low-temperature coolant. Methods: In the present investigation, the supercooling process was executed prior to quick freezing for reducing the time by which the temperature passes the zone of maximum ice crystal formation. Every food has different nucleation points and hence, we used silicone oil as the coolant for supercooling for easy modification of temperature. Additionally, for quick freezing, we used liquid nitrogen spray. Results: Using the heat exchanger-type precooler with silicone oil, the temperature of the chamber was easily changed for enabling supercooling. Particularly, the results of the freezing test with garlic indicated that this system improved the hardness of garlic after it was thawed, compared to the conventional freezing method. Conclusions: Before quick freezing, if the food item is subjected to the supercooling state, the time from nucleation to the temperature reaching the frozen state ($-5^{\circ}C$, which is the maximum ice crystal formation zone) will be shorter than that incurred using quick freezing alone. The combination of the heat exchanger-type supercooler and liquid nitrogen sprayer is expected to serve as a promising technology for improving the physicochemical qualities of frozen foods.

소형 수소액화기 설계 및 운전에 관한 연구 (Design and Operation of a Small-Scale Hydrogen Liquefier)

  • 백종훈;강상우;강형묵;나다니엘 갈소;김서영;오인환
    • 한국수소및신에너지학회논문집
    • /
    • 제26권2호
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.