• Title/Summary/Keyword: Preconcentration and separation

Search Result 49, Processing Time 0.02 seconds

Chemically Modified Submicron Silica Particulate Extractants for Preconcentration of Mercury(II)

  • Kaur, Anupreet;Gupta, Usha
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1932-1936
    • /
    • 2008
  • A new analytical method using 1-(2-pyridylazo)-2-naphthol modified $SiO_2$ nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of mercury(II) in different water samples. Conditions of the analysis such as preconcentration time, effect of pH, sample volumes, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer $SiO_2$-PAN was found to be 260 ${\mu}molg^{-1}$ at optimum pH and the detection limit (3$\sigma$) was 0.48 ${\mu}gL^{-1}$. The extractant showed rapid kinetic sorption. The adsorption equilibrium of mercury(II) on nanometer $SiO_2$-PAN was achieved just in 5 mins. Adsorbed mercury(II) was easily eluted with 5 mL of 6 M hydrochloric acid. The maximum preconcentration factor was 50. The method was applied for the determination of trace amounts of mercury(II) in various water samples and industrial effluents.

Determination of Lead in Different Samples by Atomic Absorption Spectrometry after Preconcentration with Dithizone Immobilized on Surfactant-Coated Alumina

  • Dadfarnia, S.;Haji Shabani, A.M.;Dehgan Shirie, H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.545-549
    • /
    • 2002
  • A simple and rapid technique for the separation and preconcentration of lead in water and biological samples has been devised. Preconcentrationis based on the depositionof analyte onto a column packed with dithizone immobilized on sodium dodecyl sulfate coated alumina at pH $\geq$ 3. The trapped lead is eluted with 5 mL of 4 M nitric acid and determined by flame atomic absorption spectroscopy. A sample of 1 L, results in a preconcentration factor of 200 and the precision at 20${\mu}g$ $L^{-1}$ is 1.3%(n=8). The procedure is applied to tap water, well water, river water, vegetable extract and milk samples, and accuracy is assessed through recovery experiments and by independent analysis by furnace atomic absorption.

Sorbent Extraction of Some Metal Ions on a Gas Chromatographic Stationary Phase Prior to Their Flame Atomic Absorption Determinations

  • Soylak, M.;Saracoglu, S.;Elci, L.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.555-558
    • /
    • 2003
  • An enrichment/separation system for atomic absorption spectrometric determinations of Cu(Ⅱ), Fe(Ⅲ), Ni(Ⅱ) and Co(Ⅱ) has been established. The procedure is based on the adsorption of the analytes as calmagite chelates on Chromosorb-102. The effects of some parameters including pH, amount of ligand, salt matrix, flow rates of sample and eluent solutions were investigated. Under optimized conditions, the relative standard deviation of the combined method of sample treatment, preconcentration and determination with FAAS (N=5) is generally lower than 5%. The limit of detection (3σ) was between 6.0-112.9 ㎍/L. The results were used for preconcentration of analytes from some sodium and ammonium salt.

Preconcentration, Separation and Determination of lead(II) with Methyl Thymol Blue Adsorbed on Activated Carbon Using Flame Atomic Absorption Spectrometry (불꽃원자 흡수 분광법으로 활성탄소에 흡착된 메틸티몰 블루로 납(II)의 예비농축, 분리 및 측정)

  • Ensafi, Ali A.;Ghaderi , Ali R.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • on-line system for preconcentration and separation of lead(II) is presented. The method is based on the complex formation of Pb(II) with adsorbed Methyl thymol blue on activated carbon. The conditions of preparing the solid phase reagent and of quantitative recovery of Pb(II) from diluted solutions, such as acidity of aqueous phase, solid phase capacity, and flow variables were studied as well as effect of potential interfering ions. After preconcentration step, the metal ions are eluted automatically by 5 ml of 0.5 M HNO3 solution and the lead ions content was determined by flame atomic absorption spectrometry. Under the optimum conditions, the lead ions in aqueous samples were separated and preconcentrated about 1000-fold by the column. The detection limit was 0.001 g mL-1. Lead has been determined in river and tap water samples, with recovery of 98 to 102%.

Speciation of Cr(III)/Cr(VI) in Tannery Waste Waters by Using Ion-Exchange Resins

  • Kartal, S.;Tokalloglu, S.;Ozkan, B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.694-698
    • /
    • 2006
  • A method has been described for the chemical speciation, preconcentration and determination of Cr(III) and Cr(VI) species in filtered tannery waste waters by flame atomic absorption spectrometry using ion-exchange resins. Amberlite IR-120($H^+$) strongly acidic cation exchanger and Amberlite IRA-410($CI ^-$) strongly basic anion exchanger resins were used for the separation and preconcentration of Cr(III) and Cr(VI) species, respectively. Optimum condition for preconcentration and speciation was obtained by testing pH of sample and eluent, flow rates of sample and eluent, amount of resins, volume of sample and eluents, and effect of foreign ions. The recommended method has been successfully applied for the preconcentration and determination of chromium species in the dissolved phase of waste water samples collected from a tannery waste water treatment plant in Kayseri, Turkey. The detection limits achieved were 0.73 $\mu$g/L for Cr(III) and 0.81 $\mu$g/L for Cr(VI). Recovery studies showed 99% for Cr(III) and 98% for Cr(VI), for samples spiked with single species.

The Use of Phenanthraquinone Monophenyl Thiosemicarbazone for Preconcentration, Ion Flotation and Spectrometric Determination of Zinc(II) in Human Biofluids and Pharmaceutical Samples

  • Akl, Magda Ali
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.725-732
    • /
    • 2006
  • A rapid flotation methodology for zinc(II) separation and enrichment from human biofluids is established. At pH 6.0 and ambient temperature, using oleic acid (HOL) as a foaming reagent, zinc(II) was separated with phenanthraquinone monophenyl thiosemicarbazone (PPT) as a new flotation collector for Zn(II). The floated red colored 1 : 2 Zn(II)-PPT complex was measured spectrophotometrically at 526 nm with a molar absorptivity of $1.83 \;{\times}\; 10^5\; L$ mol $L ^{-1}\;cm ^{-1}$. Beer's law was obeyed over a concentration range 0.05-1.0 mg $L ^{-1}$ in the aqueous as well as in the scum layers. The proposed preconcentration flotation methodology was applied to determine Zn(II) in human biofluids. Application was, also, extended to determine Zn(II) in pharmaceutical samples and natural water samples spiked with known amounts of Zn(II) with a preconcentration factor of 100 and a detection limit of 10 ng m$L ^{-1}$. The method was verified by comparison of the spectrophotometric results with flame atomic absorption spectrometric (AAS) measurements. Moreover a postulation for the mechanism of flotation is proposed.

Development of Portable Preconcentration-Gas Chromatography System for Fast Analysis of Trace Benzene, Toluene and Xylene in Air (대기 중 극미량의 벤젠, 톨루엔 및 자일렌의 신속한 분석을 위한 휴대용 농축-기체 크로마토크래피 시스템 개발)

  • Jung, Young-Rim;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.432-441
    • /
    • 2001
  • An automated on-line portable preconcentration-short column gas chromatograph was developed, which used preconcentrator using adsorption tube with Tenax-GR and Curie-point heating. The developed system operated with 3 steps of processing, preconcentration, thermal desorption, and analysis and cleaning, and could continued operating within 1~2 min cycle. The recoveries of preconcentrator for toluene was ranged between $94.7{\pm}6.6%$ and $103.8{\pm}3.1%$ with less than 7% of RSD. For benzene, toluene and xylene(BTX) standard gas test, IDL was 41, 49, $472ng/m^3$ benzene, toluene and o-xylene, respectively. The BTX mixture was analyzed within 30 sec with baseline separation by the system equipped with 4 m long capillary column. The deficiency of separation power caused by short column was solved by the control of sample injection volume and inlet/outlet pressure ratio. The automated portable preconcentration-short column gas chromatograph system was found to be useful for the continuous air monitoring of BTX at ppb levels in ambient air.

  • PDF

A Study on Optimization for Separation of Phenols and Preconcentration-Separation of Trace Phenols in Reversed-Phase Liquid Chromatography (역상 액체 크로마토그래피에서 페놀류의 분리 최적화 및 미량 페놀류의 농축-분리에 관한 연구)

  • Lee Dai Woon;Lee Sung Won;So, Min Jeong;Cho Byung Yun
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.513-522
    • /
    • 1993
  • The purpose of this study is to optimize the selectivity of mobile phase solvents for separation of 25 phenols in reversed phase liquid chromatography and to accomplish the simultaneous preconcentration and separation of trace phenols from water samples. Phenols used in this study were classified into three groups, chloro-, methyl-, and nitrophenols. Quaternary solvent mobile phases were employed to improve the selectivity. Overlapping resolution maps(ORM) as a statistical simplex techniques was used to predict the optimum solvent system. Additional criterion such as pH and temperature were also investigated. In order to improve the resolution and decrease the analysis time, isoselective multisolvent gradient elution system was employed with ORM-Prism method. The simultaneous preconcentration and separation of trace phenols from water samples were performed by using XAD-2/Dowex 1-X8 tandem column. When the extraction efficiency was evaluated by sampling up to 1 L of distilled water, recovery of the phenols, except phenol, was above 90% and the limit of detection of the phenols was 5 ppb. The XAD-2/Dowex 1-X8 method was superior to C18 cartridge in terms of recovery and selectivity.

  • PDF