• Title/Summary/Keyword: Precompensator

Search Result 22, Processing Time 0.018 seconds

Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems (전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

A Novel Fuzzy Logic Controller for Systems with Dedzones (사구간이 존재하는 시스템을 위한 새로운 퍼지 논리 제어기)

  • 이선우;박종환;김종환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.468-477
    • /
    • 1994
  • Existing fuzzy control methods do not perform well when applied to systems containing nonlinearities arising from unkonwn deadzones. In particular, we show that a conventional fuzzy logic controller applied to a system with a deadzone suffers from poor transient performance and a large steady-syate error. In this paper, we propose a novel two-layered fuzzy logic controller for controlling systems with deadzones. The two-layered control structure consists of a fuzzy logic-based precompensator followed by a conventional fuzzy logic controller. Our proposed controller exhibits superior transient and steady-state performance compared to conventional fuzzy controllers. In addition, the controller is robust to variations in deadzone nonlinearities. We illustrate the effectiveness of our scheme using computer simulation examples.

  • PDF