• Title/Summary/Keyword: Preclinical research

Search Result 242, Processing Time 0.022 seconds

Unraveling Stereochemical Structure-Activity Relationships of Sesquiterpene Lactones for Inhibitory Effects on STAT3 Activation

  • Seungchan An;Jaemoo Chun;Joohee Lee;Yeong Shik Kim;Minsoo Noh;Hyejin Ko
    • Biomolecules & Therapeutics
    • /
    • v.32 no.5
    • /
    • pp.627-634
    • /
    • 2024
  • Sesquiterpene lactones, a class of natural compounds abundant in the Asteraceae family, have gained attention owing to their diverse biological activities, and particularly their anti-proliferative effects on human cancer cells. In this study, we systematically investigated the structure-activity relationship of ten sesquiterpene lactones with the aim of elucidating the structural determinants for the STAT3 inhibition governing their anti-proliferative effects. Our findings revealed a significant correlation between the STAT3 inhibitory activity and the anti-proliferative effects of sesquiterpene lactones in MDA-MB-231 breast cancer cell lines. Among the compounds tested, alantolactone and isoalantolactone emerged as the most potent STAT3 inhibitors, highlighting their potential as candidates for anticancer drug development. Through protein-ligand docking studies, we revealed the structural basis of STAT3 inhibition by sesquiterpene lactones, emphasizing the critical role of hydrogen-bonding interactions with key residues, including Arg609, Ser611, Glu612, and Ser613, in the SH2 domain of STAT3. Furthermore, our conformational analysis revealed the decisive role of the torsion angle within the geometry-optimized structures of sesquiterpene lactones in their STAT3 inhibitory activity (R=0.80, p<0.01). These findings not only provide preclinical evidence for sesquiterpene lactones as promising phytomedicines against diseases associated with abnormal STAT3 activation, but also highlight the importance of stereochemical aspects in their activity.

Development of Recombinant Human Growth Hormone in Yeast: Efficacy Evaluation and Safety Assessment (Human growth hormone의 개발과 이에 따른 효능 및 안전성 평가)

  • Lee Sangkyun;Park Soon Jae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 1997.10a
    • /
    • pp.38-42
    • /
    • 1997
  • Human growth hormone is known as one of the peptide hormones which is consisted of 191 amino acids derived from the pituitary gland in humans. The objectives of this study were to supply inexpensive recombinant methionyl human growth hormones (rHGH) synthesized by the DNA technology in a yeast cell line and followed by the establishement of protein purification techniques. The next steps of the research were to study its physic-chemical properties and biological properties, and to evaluate various preclinical aspcts including pharmacokinetics sutdy, general pharmacology study, general toxicity test, and specific toxicity tests. Clinical phase I, II, III studies were also done against growth hormone dficient children to reveal that growth promoting effects were similar compared with the natural HGH extracted from pituitary glands and commercially available rHGHs. The results could be summarized that (I) this yeast dervied rHGH have had excellent physico-chemical and biological properties in comparison with a natural HGH and other synthesized rHGHs, (2) we could not see any toxic side effects when very high doses were administered to the experimental animals, and (3) this growth hormone showed effectiveness in the growth stimulating to growth hormone deficient patients.

  • PDF

Pharmacological evaluation of HM41322, a novel SGLT1/2 dual inhibitor, in vitro and in vivo

  • Lee, Kyu Hang;Lee, Sang Don;Kim, Namdu;Suh, Kwee Hyun;Kim, Young Hoon;Sim, Sang Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • HM41322 is a novel oral sodium-glucose cotransporter (SGLT) 1/2 dual inhibitor. In this study, the in vitro and in vivo pharmacokinetic and pharmacologic profiles of HM41322 were compared to those of dapagliflozin. HM41322 showed a 10-fold selectivity for SGLT2 over SGLT1. HM41322 showed an inhibitory effect on SGLT2 similar to dapagliflozin, but showed a more potent inhibitory effect on SGLT1 than dapagliflozin. The maximum plasma HM41322 level after single oral doses at 0.1, 1, and 3 mg/kg were 142, 439, and 1830 ng/ml, respectively, and the $T_{1/2}$ was 3.1 h. HM41322 was rapidly absorbed and reached the circulation within 15 min. HM41322 maximized urinary glucose excretion by inhibiting both SGLT1 and SGLT2 in the kidney. HM41322 3 mg/kg caused the maximum urinary glucose excretion in normoglycemic mice ($19.32{\pm}1.16mg/g$) at 24 h. In normal and diabetic mice, HM41322 significantly reduced glucose excursion. Four-week administration of HM41322 in db/db mice reduced HbA1c in a dose dependent manner. Taken together, HM41322 showed a favorable preclinical profile of postprandial glucose control through dual inhibitory activities against SGLT1 and SGLT2.

Preclinical Study on Biodistribution of Mesenchymal Stem Cells after Local Transplantation into the Brain

  • Narayan Bashyal;Min Gyeong Kim;Jin-Hwa Jung;Rakshya Acharya;Young Jun Lee;Woo Sup Hwang;Jung-Mi Choi;Da-Young Chang;Sung-Soo Kim;Haeyoung Suh-Kim
    • International Journal of Stem Cells
    • /
    • v.16 no.4
    • /
    • pp.415-424
    • /
    • 2023
  • Therapeutic efficacy of mesenchymal stem cells (MSCs) is determined by biodistribution and engraftment in vivo. Compared to intravenous infusion, biodistribution of locally transplanted MSCs are partially understood. Here, we performed a pharmacokinetics (PK) study of MSCs after local transplantation. We grafted human MSCs into the brains of immune-compromised nude mice. Then we extracted genomic DNA from brains, lungs, and livers after transplantation over a month. Using quantitative polymerase chain reaction with human Alu-specific primers, we analyzed biodistribution of the transplanted cells. To evaluate the role of residual immune response in the brain, MSCs expressing a cytosine deaminase (MSCs/CD) were used to ablate resident immune cells at the injection site. The majority of the Alu signals mostly remained at the injection site and decreased over a week, finally becoming undetectable after one month. Negligible signals were transiently detected in the lung and liver during the first week. Suppression of Iba1-positive microglia in the vicinity of the injection site using MSCs/CD prolonged the presence of the Alu signals. After local transplantation in xenograft animal models, human MSCs remain predominantly near the injection site for limited time without disseminating to other organs. Transplantation of human MSCs can locally elicit an immune response in immune compromised animals, and suppressing resident immune cells can prolong the presence of transplanted cells. Our study provides valuable insights into the in vivo fate of locally transplanted stem cells and a local delivery is effective to achieve desired dosages for neurological diseases.

Host modulation therapy for improving the osseointegration of dental implants under bone healing-suppressed conditions: a preclinical rodent-model experiment

  • Young Woo Song;Jin-Young Park;Yoon-Hee Kwon;Wooyoung Eric Jang;Sung-Jin Kim;Jeong Taeg Seo;Seok Jun Moon;Ui-Won Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.54 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • Purpose: Placing dental implants in areas with low bone density or in conditions where bone healing is suppressed is challenging for clinicians. An experiment using a rodent model was performed with the aim of determining the efficacy of host modulation by increasing the systemic level of cholesterol sulfate (CS) using Irosustat in the context of the bone healing process around dental implants. Methods: In 16 ovariectomised female Sprague-Dawley rats, 2 implant fixtures were placed in the tibial bones (1 fixture on each side). At 1 week after surgery, the high-CS group (n=8) received Irosustat-mixed feed, while the control group (n=8) was fed conventionally. Block specimens were obtained at 5 weeks post-surgery for histologic analysis and the data were evaluated statistically (P<0.05). Results: Unlike the high-CS group, half of the specimens in the control group demonstrated severe bone resorption along with a periosteal reaction in the cortex. The mean percentages of bone-to-implant contact (21.5%) and bone density (28.1%) near the implant surface were significantly higher in the high-CS group than in the control group (P<0.05), as was the number of Haversian canals (by 5.3). Conclusions: Host modulation by increasing the CS level may enhance the osseointegration of dental implants placed under conditions of impaired bone healing.

Anticancer Activity of Essential Oils: Targeting of Protein Networks in Cancer Cells

  • Aras, Aliye;Iqbal, Muhammed Javed;Naqvi, Syed Kamran-Ul-Hassan;Gercek, Yusuf Can;Boztas, Kadir;Gasparri, Maria Luisa;Shatynska-Mytsyk, Iryna;Fayyaz, Sundas;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8047-8050
    • /
    • 2014
  • Cancer is a multifaceted and genomically complex disease and research over decades has gradually and sequentially shown that essential biological mechanisms including cell cycle arrest and apoptosis are deregulated. The benefits of essential oils from different plants have started to gain appreciation as evidenced by data obtained from cancer cell lines and xenografted mice. Encouraging results obtained from preclinical studies have attracted considerable attention and various phytochemicals have entered into clinical trials.

The Effect of Germanium Complex on the Body Fat Weight, Body Weight and Serum Biochemical Value in Rats Fed High Fat Diets (게르마늄 복합물이 비만유도 흰쥐의 체지방 및 체중과 생화학적 변화에 미치는 영향)

  • Jung, Winston;Song, Si-Whan;Hong, Dong-Ho
    • YAKHAK HOEJI
    • /
    • v.50 no.3
    • /
    • pp.160-165
    • /
    • 2006
  • Germanium is found in a range of minerals and ores and is present in foods including beans, tomato juice, oysters, tuna and garlic. Germanium is a non-metallic element, which can exist in valence states of 2 and 4. Clinical trials and use in private practices for more than a decade have demonstrated organic germanium's efficacy in treating serious disease including cancer, arthritis and senile osteoporosis. But it was rarely reported that inorganic germanium has biological properties. STB-BM contains mineral complex, rare earth elements and a little amount of Inorganic germanium. The experiment was carried out the anti-obesity effect. To investigate anti-obesity effect of STB-BM, we measured the effect of body weight, fat weight (subcutaneous fat, epididymal fat, visceral fat, kidney fat and total fat) and serum biochemical level in rats fed high fat diets. STB-BM 35 mg/kg suppressed the increasing ratio of body weight, epididymal fat weight, visceral fat weight, total fat weight, triglyceride and LDL-cholesterol (p<0.05).

Zoonotic Echinostome Infections in Free-Grazing Ducks in Thailand

  • Saijuntha, Weerachai;Duenngai, Kunyarat;Tantrawatpan, Chairat
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.663-667
    • /
    • 2013
  • Free-grazing ducks play a major role in the rural economy of Eastern Asia in the form of egg and meat production. In Thailand, the geographical location, tropical climate conditions and wetland areas of the country are suitable for their husbandry. These environmental factors also favor growth, multiplication, development, survival, and spread of duck parasites. In this study, a total of 90 free-grazing ducks from northern, central, and northeastern regions of Thailand were examined for intestinal helminth parasites, with special emphasis on zoonotic echinostomes. Of these, 51 (56.7%) were infected by one or more species of zoonotic echinostomes, Echinostoma revolutum, Echinoparyphium recurvatum, and Hypoderaeum conoideum. Echinostomes found were identified using morphological criteria when possible. ITS2 sequences were used to identify juvenile and incomplete worms. The prevalence of infection was relatively high in each region, namely, north, central, and northeast region was 63.2%, 54.5%, and 55.3%, respectively. The intensity of infection ranged up to 49 worms/infected duck. Free-grazing ducks clearly play an important role in the life cycle maintenance, spread, and transmission of these medically important echinostomes in Thailand.

Molecular Mechanisms of Apoptosis and Roles in Cancer Development and Treatment

  • Goldar, Samira;Khaniani, Mahmoud Shekari;Derakhshan, Sima Mansoori;Baradaran, Behzad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2129-2144
    • /
    • 2015
  • Programmed cell death (PCD) or apoptosis is a mechanism which is crucial for all multicellular organisms to control cell proliferation and maintain tissue homeostasis as well as eliminate harmful or unnecessary cells from an organism. Defects in the physiological mechanisms of apoptosis may contribute to different human diseases like cancer. Identification of the mechanisms of apoptosis and its effector proteins as well as the genes responsible for apoptosis has provided a new opportunity to discover and develop novel agents that can increase the sensitivity of cancer cells to undergo apoptosis or reset their apoptotic threshold. These novel targeted therapies include those targeting anti-apoptotic Bcl-2 family members, p53, the extrinsic pathway, FLICE-inhibitory protein (c-FLIP), inhibitor of apoptosis (IAP) proteins, and the caspases. In recent years a number of these novel agents have been assessed in preclinical and clinical trials. In this review, we introduce some of the key regulatory molecules that control the apoptotic pathways, extrinsic and intrinsic death receptors, discuss how defects in apoptotic pathways contribute to cancer, and list several agents being developed to target apoptosis.

Screening of Differential Promoter Hypermethylated Genes in Primary Oral Squamous Cell Carcinoma

  • Khor, Goot Heah;Froemming, Gabrielle Ruth Anisah;Zain, Rosnah Binti;Abraham, Mannil Thomas;Thong, Kwai Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8957-8961
    • /
    • 2014
  • Background: Promoter hypermethylation leads to altered gene functions and may result in malignant cellular transformation. Thus, identification of biomarkers for hypermethylated genes could be useful for diagnosis, prognosis, and therapeutic treatment of oral squamous cell carcinoma (OSCC). Objectives: To screen hypermethylated genes with a microarray approach and to validate selected hypermethylated genes with the methylation-specific polymerase chain reaction (MSPCR). Materials and Methods: Genome-wide analysis of normal oral mucosa and OSCC tissues was conducted using the Illumina methylation microarray. The specified differential genes were selected and hypermethylation status was further verified with an independent cohort sample of OSCC samples. Candidate genes were screened using microarray assay and run by MSPCR analysis. Results: TP73, PIK3R5, and CELSR3 demonstrated high percentages of differential hypermethylation status. Conclusions: Our microarray screening and MSPCR approaches revealed that the signature candidates of differentially hypermethylated genes may possibly become potential biomarkers which would be useful for diagnostic, prognostic and therapeutic targets of OSCC in the near future.