• Title/Summary/Keyword: Precision fit

Search Result 170, Processing Time 0.025 seconds

Higher food literacy scores are associated with healthier diet quality in children and adolescents: the development and validation of a two-dimensional food literacy measurement tool for children and adolescents

  • Park, Dahyun;Choi, Mi-Kyung;Park, Yoo Kyoung;Park, Clara Yongjoo;Shin, Min-Jeong
    • Nutrition Research and Practice
    • /
    • v.16 no.2
    • /
    • pp.272-283
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Most child and adolescent food literacy measurement tools focus on nutrition and food safety. However, the importance of aspects related to the food system such as food distribution and food waste and their effects on environmental sustainability is growing. We therefore developed and validated a two-dimensional tool for children (8-12 years old) and adolescents (13-18 years old) that can comprehensively measure food literacy. The association of food literacy with diet quality and self-reported health was assessed. SUBJECTS/METHODS: First, we developed a food literacy conceptual framework that contains food system and literacy dimensions through a literature review, focus group interviews, and expert review. After a face validity study, we conducted the main survey (n = 200) to validate the questionnaire. Construct validity and reliability were assessed using exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and Cronbach's alpha. RESULTS: As a result of the Delphi study, content validity was confirmed for the remaining 30 items after two items were excluded (content validity ratio = 0.86). Eleven items were excluded from the EFA results, while the CFA results indicated appropriate fit indices for the proposed model (comparative fit index = 0.904, root mean square error of approximation = 0.068). The final food literacy questionnaire consisted of 19 questions and comprised 5 factors: production, distribution, selection, preparation and cooking, and intake. Food literacy was positively associated with diet quality, as assessed by the Nutrition Quotient score, in both children and adolescents and with self-reported health in adolescents.

Effect of zirconia ceramic sintering condition on the precision of fit in dental restorations (지르코니아 세라믹 소결조건이 치과보철물의 적합도에 미치는 영향)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.42 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • Purpose: This study aimed to investigate the effects of the sintering conditions of zirconia core on the adaptability. Methods: Ten specimens of each of commercial brand of zirconia(Razor 1100, U&C international, Seoul, Korea) were made and sintered under three different conditions. Specimens were divided into three subgroup(n=10) and sintered with various total time(1hr, 3hr, 9hr) at the maximum temperature(1500℃). The digitized data was superimposed with 3D inspection software to quantitatively obtain the adaptation of a zirconia core, and visual differences were confirmed with a color map. The root mean square(RMS) values of group were statistically analyzed with one-way ANOVA(α=0.05). Results: The overall adaptation of the zirconia cores were as follows; ss-1hr: 36.18±5.2㎛, ss-3hr: 39.55±3.9㎛, cs-9hr: 46.62±4.3㎛. They were statistically significant differences between groups for adaptation(p<0.05). Conclusion: Based on the results of this study, it could be considered that sintering condition of 1500℃ and 1~3 hour is recommended for the better marginal and internal fit. Speed sintering can be widely utilized to fabricate zirconia prothesis as the properties of those almost are to dentistry uses.

A Study on Speaker Identification Using Hybrid Neural Network (하이브리드 신경회로망을 이용한 화자인식에 관한 연구)

  • Shin, Chung-Ho;Shin, Dea-Kyu;Lee, Jea-Hyuk;Park, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.600-602
    • /
    • 1997
  • In this study, a hybrid neural net consisting of an Adaptive LVQ(ALVQ) algorithm and MLP is proposed to perform speaker identification task. ALVQ is a new learning procedure using adaptively feature vector sequence instead of only one feature vector in training codebooks initialized by LBG algorithm and the optimization criterion of this method is consistent with the speaker classification decision rule. ALVQ aims at providing a compressed, geometrically consistent data representation. It is fit to cover irregular data distributions and computes the distance of the input vector sequence from its nodes. On the other hand, MLP aim at a data representation to fit to discriminate patterns belonging to different classes. It has been shown that MLP nets can approximate Bayesian "optimal" classifiers with high precision, and their output values can be related a-posteriori class probabilities. The different characteristics of these neural models make it possible to devise hybrid neural net systems, consisting of classification modules based on these two different philosophies. The proposed method is compared with LBG algorithm, LVQ algorithm and MLP for performance.

  • PDF

Orbit Determination Using SLR Data for STSAT-2C: Short-arc Analysis

  • Kim, Young-Rok;Park, Eunseo;Kucharski, Daniel;Lim, Hyung-Chul
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.189-200
    • /
    • 2015
  • In this study, we present the results of orbit determination (OD) using satellite laser ranging (SLR) data for the Science and Technology Satellite (STSAT)-2C by a short-arc analysis. For SLR data processing, the NASA/GSFC GEODYN II software with one year (2013/04 - 2014/04) of normal point observations is used. As there is only an extremely small quantity of SLR observations of STSAT-2C and they are sparsely distribution, the selection of the arc length and the estimation intervals for the atmospheric drag coefficients and the empirical acceleration parameters was made on an arc-to-arc basis. For orbit quality assessment, the post-fit residuals of each short-arc and orbit overlaps of arcs are investigated. The OD results show that the weighted root mean square post-fit residuals of short-arcs are less than 1 cm, and the average 1-day orbit overlaps are superior to 50/600/900 m for the radial/cross-track/along-track components. These results demonstrate that OD for STSAT-2C was successfully achieved with cm-level range precision. However its orbit quality did not reach the same level due to the availability of few and sparse measurement conditions. From a mission analysis viewpoint, obtaining the results of OD for STSAT-2C is significant for generating enhanced orbit predictions for more frequent tracking.

Influence of final crystallization process on precision of fit of monolithic CAD/CAM-generated restorations by lithium disilicate: A comparative study (리튬 디실리케이트 최종 결정화 과정이 CAD/CAM으로 제조된 수복물의 적합도에 미치는 영향)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.271-278
    • /
    • 2019
  • Purpose: To quantify the effect of the crystallization process on lithium disilicate ceramic crowns that are fabricated using a computer-aided design/computer-aided manufacturing(CAD/CAM) system, and to determine whether they are clinically acceptable by comparing values before and after the crystallization process. Methods: The maxillary first molar was selected as the abutment for the experiments. Ten working models were prepared. Marginal and internal gap of 4 groups of lithium disilicate crowns(n=10) fabricated with conventional method. Comparison was performed using the silicone replica technique and 3D superimposition analysis. The marginal and internal gaps of the restoration were measured before and after the crystallization process of this prosthesis. The average value of each part(the average of values measured before and after the crystallization) was statistically analyzed using paired t-test(α=0.05). Results: The results from the second phase of this research, which compared the average value of the gap between the marginal and internal fits of the lithium disilicate single crown before and after the crystallization process, indicated that the marginal gap was larger and the internal gap was smaller after the crystallization process, and this difference was statistically significant (P<0.05) in all the parts evaluated. Conclusion: While the shrinkage that occurs during crystallization does affect the marginal and internal fit of the prosthesis, it cannot be concluded to be a major effect because the resultant distortion was within the clinically acceptable range.

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Effect of Porcelain Firing Process on the Marginal and Internal Fit of Ni-Cr Alloy Metal-Ceramic Crown (도재 소성과정이 Ni-Cr 금속도재관의 변연 및 내면 적합도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Seok-Hwan;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.14 no.3
    • /
    • pp.405-410
    • /
    • 2014
  • The purpose of this study in vitro investigation was to compare the marginal and internal fit of Ni-Cr alloy metal ceramic crown before and after porcelain veneering. Furthermore, this study evaluated whether the influence of the porcelain firing on the precision of fit of dental prostheses. The maxillary right incisor was selected as an abutment for experiments. Ten working models were prepared. Ni-Cr alloy cores appropriate for each abutment were prepared by lost wax technique. The marginal area and four internal areas of the crowns were measured at two stages: before veneering process and after upper porcelain firing. Silicone replica techniques were used. The data were statistically analyzed with the paired t-test (${\alpha}=0.05$). $Mean{\pm}SD$ marginal and internal gap were $67.1{\pm}23.3{\mu}m$ for the nickle chrome alloy core group and $74.4{\pm}21.9{\mu}m$ for the metal ceramic crown group. There were statistically significant differences in all investigated areas (p<0.05). Within the limitations of this study, none of the Ni-Cr alloy metal crown values measured after porcelain firing process exceeded $120{\mu}m$, which is the clinically acceptable threshold.

Development of Korean Geoid Model and Verification of its Precision (우리나라 지오이드 모델 구축 및 정밀도 검증)

  • Lee, Jisun;Kwon, Jay Hyoun;Baek, Kyeong Min;Moon, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • The previous geoid model developed in early 2000s shows 14cm level of precision due to the problems on distribution, and quality of the land gravity and GPS/Leveling data. From 2007, the new land and airborne gravity data as well as GPS/Leveling data having high quality and regular distribution has been obtained. In 2011, a new gravimetric geoid model has been constructed with precision of 5.29cm which was improved about 27% comparing to the previous model. However, much more land gravity data has been collected at the control point, bench marks and triangulation points since 2010. Also, GPS/Leveling data having 10km spacing over whole country has been obtained through the project which is for the construction of new control points. In this study, new gravimetric geoid has been calculated based on the all available gravity data up to present. The geoid height shows the range from 18.05m to 32.70m over whole country and its precision is 5.76cm. The degree of fit and precision of hybrid geoid model are 3.60cm and 4.06cm, respectively. At the end, 3.35cm of the relative precision in 15km baseline has been calculated to confirm its practical usage. Especially, it has been founded that regional bias occurred at the Kangwon and coastal area due to problems on the leveling data. Also, some inland points show inconsistent large difference which needs to be verified by analyzing the unified control points results.

Effect of post-rinsing time and method on accuracy of denture base manufactured with stereolithography

  • Katheng, Awutsadaporn;Kanazawa, Manabu;Komagamine, Yuriko;Iwaki, Maiko;Namano, Sahaprom;Minakuchi, Shunsuke
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • PURPOSE. This in vitro study investigates the effect of different post-rinsing times and methods on the trueness and precision of denture base resin manufactured through stereolithography. MATERIALS AND METHODS. Ninety clear photopolymer resin specimens were fabricated and divided into nine groups (n = 10) based on rinsing times and methods. All specimens were rinsed with 99% isopropanol alcohol for 5, 10, and 15 min using three methods-automated, ultrasonic cleaning, and hand washing. The specimens were polymerized for 30 min at 40℃. For trueness, the scanned intaglio surface of each SLA denture base was superimposed on the original standard tessellation language (STL) file using best-fit alignment (n = 10). For precision, the scanned intaglio surface of the STL file in each specimen group was superimposed across each specimen (n = 45). The root mean square error (RMSE) was measured, and the data were analyzed statistically through one-way ANOVA and Tukey test (α < .05). RESULTS. The 10-min automated group exhibited the lowest RMSE. For trueness, this was significantly different from specimens in the 5-min hand-washed group (P < .05). For precision, this was significantly different from those of other groups (P < .05), except for the 15-min automated and 15-min ultrasonic groups. The color map results indicated that the 10-min automated method exhibited the most uniform distribution of the intaglio surface adaptation. CONCLUSION. The optimal postprocessing rinsing times and methods for achieving clear photopolymer resin were found to be the automated method with rinsing times of 10 and 15 min, and the ultrasonic method with a rinsing time of 15 min.

A Study on the Contact Interval in the Main Spindle Interface of High Speed Spindle according to Variation of Clamping Force and Rotational Speed (고속 주축에서 클램핑력 및 회전수 변화에 따른 주축 인터페이스 접촉률 변화에 관한 연구)

  • Hwang Y.K.;Cho Y.D.;Lee C.M.;Chung W.J
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1749-1752
    • /
    • 2005
  • High speed machining has become the main issue of metal cutting. Due to increase of the rotational speed of the spindle, problems, such as the run-out errors, reduced stiffness, must be overcome to improve the machining accuracy. In order to solve the problems, it is important to determine the appropriate clamping unit and tooling system. This paper presents an investigation into an evaluation of contact interval which is the interface between spindle taper hole and tool holder shank of the spindle. Finite element analysis is performed by using a commercial code ANSYS according to variation of clamping forces and rotational speeds. This paper proposed fit tolerance in order to evaluate the effects of clamping force and rotational speed on the contact interval in the spindle interface. From the finite element results, it has been shown that the rotational speed rather than clamping force mostly influence on the variation of the contact interval.

  • PDF