• Title/Summary/Keyword: Precision control

Search Result 4,590, Processing Time 0.031 seconds

The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck (지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석)

  • Oh, Joo-Young;Lee, Guen-Ho;Song, Chang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.

Design of Precision Motor Dynamometer System using MR Fluid (MR Fluid를 이용한 정밀 모터 동력계 실험 장치 설계)

  • Kim J.K.;Roh C.Y.;Roh M.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.313-317
    • /
    • 2005
  • Precision motor dynamometer is requiring for nano positioning control performance recently. Particularly, linear motor is using rapidly and the dynamometer needs is increasing. In this study, a precision control dynamometer is designed using MR (Magnetic Rheological) damper. The ultra precision motor system including the driver and controller is tested using the MR damper dynamometer. This dynamometer is able to measure torque for rotary motor or traction force with linear positioning accuracy for linear motor system.

  • PDF

Development of the Straightness Compensation System for Ultra-Precision Machine Using DSP (DSP를 이용한 초정밀가공기용 진직도 보상시스템 개발)

  • 이대희;이종호;김호상;민흥기;김민기;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.283-286
    • /
    • 2002
  • This paper presents the straightness compensation system which is a device for improving the machining accuracy of ultra-precision machines by synchronizing the position of diamond tool tip with machine error motion. Sine it is actuated by piezoelectric actuator with highly nonlinear hysteresis characteristics, the feedback control schemes such as Proportional Integral(PI), are required and realized by measuring the displacements of diamond tool tip. for the better tracking performance, the controller was implemented using TMS320C32 32bit floating-point DSP which is fast so that the real-time control is possible. In addition, stand alone type DSP board was chosen fur the easy assembly into the ultra-precision machines. The experimental results show good command tracking performance and the motion error of the machine is satisfactorily compensated during the machining process.

  • PDF

A study of the design and control system for the ultra-precision stage (초정밀 스테이지 설계 및 제어 시스템에 관한 연구)

  • Park Jongsung;Jeong Kyuwon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.54-59
    • /
    • 2005
  • Recently, the ultra-precision stage is widely used in the fields of the nano-technology, specially in AFMs(Atomic Force Microscope) and STMs(Scanning Tunneling Microscope). In this paper, the ultra-precision stage which consists of flexure hinges, piezoelectric actuator, and ultra-precision linear encoder, is designed and developed. The guide mechanism which consisted of flexure hinges is analyzed by Finite Element Method. And we derived the transfer function of the system in 1st order system from step responses according to the magnitude. We performed simulation for the model to tune the control gain and applied the gains to the developed system. Experimental results found that the stage can be controlled in 5 nm resolution by PID controller.

  • PDF

Orthogonality Calibration of a High Precision Stage using Self-calibration Method (자가보정법을 이용한 정밀 스테이지의 직각도 보정)

  • Kim, Ki-Hyun;Park, Sang-Hyun;Kim, Dong-Min;Jang, Sang-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.50-57
    • /
    • 2010
  • A high precision air bearing stage has been developed and calibrated. This linear-motor driven stage was designed to transport a glass or wafer with the X and Y following errors in nanometer regime. To achieve this level of precision, bar type mirrors were adopted for real time ${\Delta}X$ and ${\Delta}Y$ laser measurement and feedback control. With the laser wavelength variation and instability being kept minimized through strict environment control, the orthogonality of this type of control system becomes purely dependent upon the surface flatness, distortion, and assembly of the bar mirrors. Compensations for the bar mirror distortions and assembly have been performed using the self-calibration method. As a result, the orthogonality error of the stage was successfully decreased from $0.04^{\circ}$ to 2.48 arcsec.

A Learning Control Alorithm for Noncircular Cutting with Lathe (선삭에서 비원형 단면 가공을 가공을 위한 제어연구)

  • 오창진;이상준;김옥현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.339-344
    • /
    • 1993
  • A study for a lathe to machine workpieces with noncircular corss-sections is presented. The noncircular cutting is accomplished by controlling the radial tool position synchronized with the revolution angle of spindle. A learning control algorithm is suggested for the toll positioning, of which the control performances are analyzed and simulated on a numerical computer that the effectiveness of the control is convinced. The learning control is tested on a NC-lathe which shows successful results.

  • PDF

Applying an Expert System to Statistical Process Control (통계적 공정 제어에 전문가 시스템의 적용에 관한 연구)

  • 윤건상;김훈모;최문규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.411-414
    • /
    • 1995
  • Statistical Process Control (SPC) is a set of methodologies for signaling the presence of undesired sources of variation in manufacturing processes. Expert System in SPC can serve as a valuable tool to automate the analysis and interpretation of control charts. In this paper we put forward a method of successful application of Expert System to SPC in manufacturing process.

  • PDF

Thrust Vector Control for a Launch Vehicle (발사체 추력벡터 제어)

  • 최재원;박명관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.610-613
    • /
    • 1995
  • In addition to propulsive force to a flying vehicle, a rocket propulsion system can provide moments ro rotatate the flying vehicle and thus provide control of the vehicle's attitude and flight path. By controlling the direction of the thrust vectors, it is possible to control a vehicle's pitch, yaw, and roll motions. In this paper, we will introduce general thrust vector control mechanisms.

  • PDF

Singularty Control of Robot Wrist Joints using Euler Parameters (오일러 파라미터를 이용한 로보트 손목관절의 특이성 회피제어)

  • Jeon, Ui-Sik;Park, Su-Heung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.1
    • /
    • pp.137-145
    • /
    • 1992
  • Considering the singularity of robot, singularity avoidance control of robot is very important. Because it is very difficult structurally to exclude the wrist singularity. Then new control policy is needed to overcome wrist singularity. In this paper, the singularity states of robot wrist was analyzed and control algorithms for 3 and 4 axes robot wrist were proposed. Application results of the proposed control algorithms to the path including singularity showed us their usefulness and validity.

  • PDF